Skip to main content
Log in

Buddlejol, a new α-chymotrypsin inhibitor from Buddleja asiatica

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Buddlejol (1), a new sterol, has been isolated from the ethyl acetate soluble fraction of the antispasmodic plant Buddleja asiatica along with stigmasterol (2), lignoceric acid (3), taraxerol (4) and α-amyrin (5), respectively. The structure of Buddlejol (1) was established as (24S)-stigmast-5,22-diene--ethoxy--ol by spectral analysis and comparison with closely related structures. Buddlejol revealed to be a competitive inhibitor of chymotrypsin with the Ki value of 10.60 µM as indicated by Lineweaver–Burk and Dixon plots and their re-plots against its chymotrypsin inhibition assay, while the other compounds showed less inhibitory potential. The bioassay-guided isolation was stimulated by the preliminary cytotoxic screening of various fractions of B. asiatica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdullah P (1974) Flora of west Pakistan. Stewart Herbarium Garden College Rawalpindi and Department of Botany University of Karachi

  • Ali D, Hussain S, Malik A, Ahmed Z (2003) Chemical constituents of the genus Launaea. J Chem Soc Pak 25(4):341–347

    CAS  Google Scholar 

  • Ali F, Iqbal M, Naz R, Malik A, Ali I (2011) Antimicrobial Constituents from Buddleja asiatica. J Chem Soc Pak 33(1):90–95

    CAS  Google Scholar 

  • Ali F, Khan H, Afzal M, Samad A, Khan S, Ali I (2013) Two new Cholinesterase inhibitors, asiatoates A and B from Buddleja asiatica. J Asian Nat Prod Res 15(6):631–637

    Article  CAS  PubMed  Google Scholar 

  • Amtul Z, Rahman A, Siddiqui RA, Choudhary MI (2002) Chemistry and mechanism of urease inhibition. Curr Med Chem 9:1323–1327

    Article  CAS  PubMed  Google Scholar 

  • Boulter D, Gatehouse AM (1989) Use of cowpea trypsin inhibitor (CpTI) to protect plants against insect predation. Biotechnol Adv 7:489–497

    Article  CAS  PubMed  Google Scholar 

  • Cannell RJ, Kellam SJ, Owsianka AM, Walker JM (1988) Results of a large scale screen of microalgae for the pro- duction of protease inhibitors. Planta Med 54:10–14

    Article  CAS  PubMed  Google Scholar 

  • El-Domiatya M, Winkb M, Abou-Hashem M, Abd-Allaa R (2009) Antihepatotoxic Activity and Chemical Constituents of Buddleja asiatica Lour. Z. Naturforsch C J Biosci 64(1):11–19

    Google Scholar 

  • Fathy MM, Al-Sofany RH, Kassem HA, kandil ZA (2006) Phytochemical and biological studies of certain Buddleja species growing in Egypt. Bull Fac Pharm. 44(207–219):227–237

    CAS  Google Scholar 

  • Garg SC, Dengre SL (1992) Composition of the essential oil from the leaves of buddleia asiatica lour. Flavour and Fragrance J 7(3):125–127

    Article  CAS  Google Scholar 

  • Hartwell J (1970) Plants used against cancer. Lloydia 33:87–94

    Google Scholar 

  • Hegnauer R (1962) Chemotonomie der Pfhmzen, Birkhauser. Basic 3:308–309

    Google Scholar 

  • Hilder VA, Gatehouse AM, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–162

    Article  CAS  Google Scholar 

  • Hu K, Dong A, Sun Q, Yao X (2001) Bioactivity of 247 traditional Chinese medicines against Pyricularia oryzae. Pharm Biol 39(1):47–53

    Article  Google Scholar 

  • Hussain S, Ahmed E, Malik A, Jabbar A, Ashraf M, Lodhi MA, Choudhary MI (2006) Halosterols A and B, chymotrypsin inhibitory sterols from haloxylon recurvum. Chem Pharm Bull 54(5):623–625

    Article  CAS  PubMed  Google Scholar 

  • Jain P, Bari S (2009) Isolation of stigmasterol and gamma sitosterol from petroleum ether extract of woody stem of Abelmsochus manihot. Asian J Biol Sci 2:112–117

    Article  CAS  Google Scholar 

  • Jiangsu New Medical College (1977) A dictionary of Chinese traditional medicine. Shanghai Science and Technology Press, Shanghai, p 275

    Google Scholar 

  • Kumar A, Saluja AK (2010) Isolation of stigmasterol from petroleum ether extract of aerial parts of Bryophyllum pinnatum (Crassulaceae). J Pharm Res. 3(12):2802–2803

    Google Scholar 

  • Lee S, Xiao C, Pei S (2008) Ethnobotanical survey of medicinal plants at periodic markets of Honghe Prefecture in Yunnan Province SW China. J Ethnopharmacol 117(2):362–377

    Article  PubMed  Google Scholar 

  • Liao Y, Houghton P, Hoults J (1999) Novel and known constituents from Buddleja species and their activity against leukocyte eicosanoid generation. J Nat Prod 62(9):1241–1245

    Article  CAS  PubMed  Google Scholar 

  • Masoud SA, Johnson LB, White FF, Reeck GR (1993) Expression of a cysteine proteinase inhibitor (oryzacystatin-I) in transgenic tobacco plants. Plant Mol Biol 21:655–659

    Article  CAS  PubMed  Google Scholar 

  • Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DJ, McLaughlin JL (1982) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 45(5):31–34

    Article  CAS  Google Scholar 

  • Nepal H (1970) Medicinal Plants of Nepal. Ministry of Forests, Kathmandu

    Google Scholar 

  • Notaro G, Piccialli V, Sica D (1992) New steroidal hydroxyketones and closely related diols from the marine sponge Cliona copiosa. J Nat Prod 55(11):1588–1594

    Article  CAS  Google Scholar 

  • Pande P, Tiwari L and Pande H (2007) Ethnoveterinary plants of Uttaranchal—A review. Indian J Trad Know 6(3):444–458

  • Patrick AK, Potts KE (1998) Protease inhibitors as antiviral agents. Clin Microb Rev 11:614–617

    Google Scholar 

  • Reis A, Von S (1973) Drugs and Foods from Little-known Plants. Harvard University Press, Cambridge

    Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28(1):425–449

    Article  CAS  Google Scholar 

  • Starkey PM (1977) The effect of human neutrophil elastase and cathepsin G on the collagen of cartilage, tendon and cornea. Acta Biol Med Germ 36:1549–1554

    CAS  PubMed  Google Scholar 

  • Tareq F, Hossain M, Sarwar A, Afroz F, Al-Mansur M, Choudhury M (2009) Phytochemical Studies on the Leaves of Xylia dolabriformis. Dhaka Univ J Pharm Sci 8(2):171

    Google Scholar 

  • Xia X, Yuan Z, Kun Z, Fan C, Rong L (2008) Chemical constituents of solanum cathayanum. J Chin Med Met 9:1332–1334

    Google Scholar 

  • Ying QL, Rinehart AR, Simon SR, Cheronist JC (1991) Inhibition of human leucocyte elastase by ursolic acid, Evidence for a binding site for pentacyclic triterpenes. Biochem J 277:521–526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng X, Xing F (2009) Ethnobotanical study on medicinal plants around Mt. Yinggeling, Hainan Island, China. J Ethnopharmacol 124(2):197–210

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farman Ali Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F.A., Khan, N.M., Khan, H.U. et al. Buddlejol, a new α-chymotrypsin inhibitor from Buddleja asiatica . Med Chem Res 24, 980–986 (2015). https://doi.org/10.1007/s00044-014-1192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1192-9

Keywords

Navigation