Skip to main content
Log in

Antimycobacterial activity and in silico study of highly functionalised dispiropyrrolidines

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Two series of novel and highly functionalised dispiropyrrolidines were synthesized using 1,3-dipolar cycloaddition reaction. The synthesized compounds were screened for their antimycobacterial activity against M. tuberculosis H37Rv using the Promega reagent BacTiter-Glo™ Microbial Cell Viability (BTG). Molecular docking analysis was carried out for the active compounds against the target enzyme enoyl-ACP reductase (InhA) to understand the possible binding mode. Of the 24 novel synthesized compounds, seven dispiropyrrolidines revealed inhibition with EC50 <25 µM. Compound 5b 7′-(4-chlorophenyl)-5′,6′,7′,7a′-tetrahydrodispiro[indan-2,5′-pyrrolo[1,2-c]-[1,3]thiazole-6′,2″-indan]-1,3,1″-trione was found to be the most active with EC50 of 10.52 µM, and was 2.2-fold more active than cycloserine. The docking result revealed that 5b had good affinity with the catalytic residues in InhA, forming hydrophobic and mild polar interactions with the important amino acids in the active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali MA, Samy JG, Manogaran E, Sellappan V, Hasan MZ, Ahsan MJ, Pandian S, ShaharYar M (2009) Synthesis and antimycobacterial evaluation of novel 5,6-dimethoxy-1-oxo-2,5-dihydro-1H-2-indenyl-5,4-substituted phenyl methanone analogues. Bioorg Med Chem Lett 19(24):7000–7002

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263(5144):227–230

    Article  CAS  PubMed  Google Scholar 

  • Bellina F, Rossi R (2006) Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron 62(31):7213–7256

    Article  CAS  Google Scholar 

  • Brimble MA, Park JH, Taylor CM (2003) Synthesis of the spiroacetal fragment of broussonetine H. Tetrahedron 59(31):5861–5868

    Article  CAS  Google Scholar 

  • Cade CE, Dlouhy AC, Medzihradszky KF, Salas-Castillo SP, Ghiladi RA (2010) Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: catalase, peroxidase, and INH-NADH adduct formation activities. Protein Sci 19(3):458–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiang C-Y, Centis R, Migliori GB (2010) Drug-resistant tuberculosis: past, present, future. Respirology 15(3):413–432

    Article  PubMed  Google Scholar 

  • Collins L, Franzblau SG (1997) Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41(5):1004–1009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crooks PA, Rosenberg HE (1978) Synthesis of spiro[tetralin-2,2′-pyrrolidine] and spiro[indan-2,2′-pyrrolidine] derivatives as potential analgesics. J Med Chem 21(6):585–587

    Article  CAS  PubMed  Google Scholar 

  • He X, Alian A, Stroud R, Ortiz de Montellano PR (2006) Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. J Med Chem 49(21):6308–6323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He X, Alian A, Ortiz de Montellano PR (2007) Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg Med Chem 15(21):6649–6658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Introduction (2008). Tuberculosis 88 (2):85–86

  • Kuo MR, Morbidoni HR, Alland D, Sneddon SF, Gourlie BB, Staveski MM, Leonard M, Gregory JS, Janjigian AD, Yee C, Musser JM, Kreiswirth B, Iwamoto H, Perozzo R, Jacobs WR, Sacchettini JC, Fidock DA (2003) Targeting tuberculosis and malaria through inhibition of enoyl reductase: compound activity and structural data. J Biol Chem 278(23):20851–20859

    Article  CAS  PubMed  Google Scholar 

  • Lawn SD, Zumla AI (2011) Tuberculosis. Lancet 378(9785):57–72

    Article  PubMed  Google Scholar 

  • Mitchison DA (2000) Role of individual drugs in the chemotherapy of tuberculosis. Int J Tuberc Lung Dis 4(9):796–806

    CAS  PubMed  Google Scholar 

  • Musser JM, Kapur V, Williams DL, Kreiswirth BN, van Soolingen D, van Embden JDA (1996) Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis 173(1):196–202

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G (2012) Tuberculosis and HIV co-infection. PLoS Pathog 8(2):e1002464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pellegrini C, Weber M, Borschberg H-J (1996) Total synthesis of (+)-elacomine and (−)-isoelacomine, two hitherto unnamed oxindole alkaloids from Elaeagnus commutata. Helv Chim Acta 79(1):151–168

    Article  CAS  Google Scholar 

  • Stylianakis I, Kolocouris A, Kolocouris N, Fytas G, Foscolos GB, Padalko E, Neyts J, De Clercq E (2003) Spiro[pyrrolidine-2,2′-adamantanes]: synthesis, anti-influenza virus activity and conformational properties. Bioorg Med Chem Lett 13(10):1699–1703

    Article  CAS  PubMed  Google Scholar 

  • Timmins GS, Deretic V (2006) Mechanisms of action of isoniazid. Mol Microbiol 62(5):1220–1227

    Article  CAS  PubMed  Google Scholar 

  • Tsuge O, Kanemasa S (1989) Recent advances in azomethine ylide chemistry. In: Alan RK (ed) Advances in heterocyclic chemistry, vol 45. Academic Press, New York, pp 231–349

    Google Scholar 

  • Usui T, Kondoh M, Cui CB, Mayumi T, Osada H (1998) Tryprostatin A, a specific and novel inhibitor of microtubule assembly. Biochem J 333(3):543–548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei AC, Ali MA, Choon TS, Quah CK, Fun H-K (2011) 7′-Phenyl-5′,6′,7′,7a′-tetrahydrodipiro[indan-2,5′-pyrrolo[1,2-c][1,3]thiazole-6′,2″-indan]-1,3,1″-trione. Acta Crystallographica Section E 67(12):o3218–o3219

    Article  CAS  Google Scholar 

  • Wei AC, Ali MA, Choon TS, Arshad S, Razak IA (2012a) 7′-Phenyl-1′,3′,5′,6′,7′,7a′-hexahydrodipiro[acenaphthylene-1,5′-pyrrolo[1,2-c]thiazole-6′,2″-indane]-2,1″(1H)-dione. Acta Crystallogr Sect E 68(4):o1265–o1266

    Article  CAS  Google Scholar 

  • Wei AC, Ali MA, Yoon YK, Ismail R, Choon TS, Kumar RS, Arumugam N, Almansour AI, Osman H (2012b) Antimycobacterial activity: a facile three-component [3 + 2]-cycloaddition for the regioselective synthesis of highly functionalised dispiropyrrolidines. Bioorg Med Chem Lett 22(15):4930–4933

    Article  CAS  PubMed  Google Scholar 

  • Wei AC, Ali MA, Yoon YK, Ismail R, Choon TS, Kumar RS (2013) A facile three-component [3 + 2]-cycloaddition for the regioselective synthesis of highly functionalised dispiropyrrolidines acting as antimycobacterial agents. Bioorg Med Chem Lett 23(5):1383–1386

    Article  CAS  PubMed  Google Scholar 

  • WHO (2013) Global tuberculosis report

  • Yuroff A, Fan F, Butler B, Collins M (2008) Application of the BacTiter-Glo™ assay for rapid enumeration and screening of antimicrobial compounds for mycobacterium avium complex bacteria. Promega Notes 98:8–10

    CAS  Google Scholar 

  • Zhang Y (2005) The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 45:529–564

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358(6387):591–593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to express their thanks to Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Molecular Medicine, Universiti of Sains Malaysia, Penang for the research facilities. This work was supported by National Institutes of Health and the National Institute of Allergy and Infectious Diseases, Contract No. HHSN272201100012I for the biological evaluation. The funding of this project was through Research Grant No. RUC (1001/PSK/8620012) and RU 1001/PKIMIA/811221.

Conflict of interest

The authors confirm that this article content has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ang Chee Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, A.C., Ali, M.A., Yoon, Y.K. et al. Antimycobacterial activity and in silico study of highly functionalised dispiropyrrolidines. Med Chem Res 24, 818–828 (2015). https://doi.org/10.1007/s00044-014-1181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1181-z

Keywords

Navigation