Skip to main content

Green synthesis and in silico investigation of dihydro-2H-benzo[1,3]oxazine derivatives as inhibitors of Mycobacterium tuberculosis

Abstract

In the midst of increasing multidrug resistance and the growing incidence of infections of Mycobacterium tuberculosis, there is compelling evidence for the synthesis of novel and effective anti-tuberculosis agents. In this report, we have synthesized, characterized, and evaluated benzo[1,3]oxazine derivatives as growth inhibitors of M. tuberculosis. Among the synthesized, dihydro-2H-benzo[1,3]oxazine derivatives, the compounds 5a, 5b, 5d, and 5h showed promising activity against M. tuberculosis when compared with currently used drugs such as Refampicin and Ethambutol. The structure–activity relationship indicates the significance of nitro, chloro, and methoxy group for the manifestation of antimycobacterial activity. Docking studies revealed the binding position of 5a, 5b, and 5h into active cleft of ribosomal A-site indicating the potential target binding molecules against M. tuberculosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Agarwal H, Kaul N, Paradkar AR, Mahadik (2004) HPTLC method for guggulsterone. I. Quantitative determination of E- and Z-guggulsterone in herbal extract and pharmaceutical dosage form. J Pharm Biomed Anal 36:33–41

    Article  Google Scholar 

  • Benveniste R, Davies J (1973) Structure-activity relationships among the aminoglycoside antibiotics: role of hydroxyl and amino groups. Antimicrob Agents Chemother 4:402–409

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Brunovska Z, Liu JP, Ishida H (1999) 1,3,5-Triphenylhexahydro-1,3,5-triazine—active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers. Macromol Chem Phys 200:1745–1752

    CAS  Article  Google Scholar 

  • Cabanas MJ, Vazquez D, Modolell J (1978) Inhibition of ribosomal translocation by aminoglycoside antibiotics. Biochem Biophys Res Commun 83:991–997

    CAS  PubMed  Article  Google Scholar 

  • Carter APWM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348

    CAS  PubMed  Article  Google Scholar 

  • Casewit CJ, Colwell KS, Rappe AK (1992) Application of a universal force field to organic molecules. J Am Chem Soc 114:10035–10046

    CAS  Article  Google Scholar 

  • Chobe SS, Kamble RD, Patil SD, Acharya AP, Hese SV, Yemul OS, Dawane BS (2013) Green approach towards synthesis of substituted pyrazole-1,4-dihydro,9-oxa,1,2,6,8-tetrazacyclopentano[b ]naphthalene-5-one derivatives as antimycobacterial agents. Med Chem Res 22:5197–5203. doi:10.1007/s00044-013-0487-6

    CAS  Article  Google Scholar 

  • Chylinska JB, Urbanski T (1963) Dihydro-1,3-oxazine derivatives and their antitumor activity. J Med Chem 6:484–487

    CAS  PubMed  Article  Google Scholar 

  • Chylinska JB, Janowiec M, Urbanski T (1971) Antibacterial activity of dihydro-1,3-oxazine derivatives condensed with aromatic rings in positions 5, 6. Br J Pharmacol 43:649–657

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Cocuzza AJ, Chidester DR, Cordova BC, Jeffrey S, Parsons RL, Bacheler LT, Erickson-Viitanen S, Trainor GL, Ko SS (2001) Synthesis and evaluation of efavirenz (Sustiva) analogues as HIV-1 reverse transcriptase inhibitors: replacement of the cyclopropylacetylene side chain. Bioorg. Med Chem Lett 11:1177–1179

    CAS  Article  Google Scholar 

  • Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382

    CAS  PubMed  Article  Google Scholar 

  • Davies JL, Gorini L, Davis BD (1965) Misreading of RNA codewords induced by aminoglycoside anti- biotics. Mol Pharmacol 1:93–106

    CAS  PubMed  Google Scholar 

  • Dawane BS, Konda SG, Mandawad GG, Shaikh BM (2010) Poly(ethylene glycol) (PEG-400) as an alternative reaction solvent for the synthesis of some new 1-(4-(4’-chlorophenyl)-2-thiazolyl)-3-aryl-5-(2-butyl-4-chloro-1H-imidazol-5yl)-2-pyrazolines and their in vitro antimicrobial evaluation. Eur J Med Chem 45:387–392

    CAS  PubMed  Article  Google Scholar 

  • Duffin WM, Rollo IM (1957) Antimalarial activity of hydroxy-substituted naphthalene compounds. Br J Pharmacol 12:171–175

    CAS  Google Scholar 

  • Duncan K, Barry CE (2004) Prospects for new antitubercular drugs. Curr Opin Microbiol 7:460–465

    CAS  PubMed  Article  Google Scholar 

  • Feldman MB, Terry DS, Altman RB, Blanchard SC (2010) Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat Chem Biol 6:54–62

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Francois B, Russell RJM, Murray JB, Aboul-ela F, Masquida B, Vicens Q, Westhof E (2005) Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Res 33:5677–5690

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Gautam A, Saklani, Jachak SM (2007) Indian medicinal plants as a source of antimycobacterial agents. J Ethnopharmacol 110:200–234

    CAS  PubMed  Article  Google Scholar 

  • Ginsberg AM (2010) Tuberculosis drug development: progress, challenges, and the road ahead. Tuberculosis 90:162–167

    CAS  PubMed  Article  Google Scholar 

  • Hsu LY, Lin CH (1996) Synthesis and biological evaluation of 3-Hydroxy methyl pyrimido[1,6-c][1,3]oxazine derivatives. Heterocycles 43:2687–2699

    CAS  Article  Google Scholar 

  • Huey R, Morris GM, Olson AJ, Goodsell DS (2007) Semiempirical free energy force field with charged-based desolvation. J Comput Chem 28:1145–1652

    CAS  PubMed  Article  Google Scholar 

  • <http://www.who.int/mediacentre/events/2006/world.tb.day/en/index.html/>, May 2006

  • Imramovsky A, Polanc S, Vinsova J, Kocevar M, Jampilek J, Reckova Z, Kaustova J (2007) A new modification of anti-tubercular active molecules. Bioorg Med Chem 15:2551–2559

    CAS  PubMed  Article  Google Scholar 

  • Ishida H, U. S. Patent (1996) Process for preparation of benzoxazine compounds in solventless systems. 5,543,516

  • Katritzky AR, Xu YJ, Jain R (2002) A novel dilithiation approach to 3,4-dihydro-2H-1,3-benzothiazines, 3,4-Dihydro-2H-1,3-benzoxazines, and 2,3,4,5-tetrahydro-1,3-benzothiazepines. J Org Chem 67:8234–8236

    CAS  PubMed  Article  Google Scholar 

  • Khobragade CN, Bodade RG, Konda SG, Dawane BS, Manwar AV (2010) Synthesis and antimicrobial activity of novel pyrazolo[3,4-d]pyrimidin derivatives. Eur J Med Chem 45:1635–1638

    CAS  PubMed  Article  Google Scholar 

  • Kuehne ME, Konopke EA (1962) Dihydro-1,3-oxazines as antitumor agents. J Med Chem 5:257–280

    CAS  Article  Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    CAS  PubMed  Article  Google Scholar 

  • Latif N, Mishriky N, Massad F (1982) Carbonyl and thiocarbonyl compounds. XIX. Intramolecular cyclization of (2-nitroetheny1) aryl N-arylcarbamates: synthesis of newer series of 3,4-dihydro-2H-1,3-oxazin-2-ones and their antimicrobial activities. Aust J Chem 35:1037–1043

    CAS  Article  Google Scholar 

  • Mandawad GG, Kamble RD, Hese SV, More RA, Gacche RN, Kodam KM, Dawane BS (2014) An efficient synthesis of isoxazoline libraries of thiophene analogs and its antimycobacterial investigation. Med Chem Res. doi:10.1007/s00044-014-1016-y

    Google Scholar 

  • Matt T, Ng CL, Lang K, Sha SH, Akbergenov R, Shcherbakov D, Meyer M, Duscha S, Xie J, Dubbaka SR, Perez-Fernandez D, Vasella A, Ramakrishnan V, Schacht J, Bottger EC (2012) Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin. Proc Natl Acad Sci U S A 109:10984–10989

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Miteva MA, Guyon F, Tufféry P (2010) Frog2: efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res 38:622–627

    Article  Google Scholar 

  • Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389–394

    CAS  PubMed  Article  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using Lamarkian genetics algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662

    CAS  Article  Google Scholar 

  • Pape T, Wintermeyer W, Rodnina MV (2000) Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nat Struct Biol 7:104–107

    CAS  PubMed  Article  Google Scholar 

  • Patel M, Ko SS, McHugh RJ Jr, Markwalder JA, Srivastava AS, Cordova BC, Klabe RM, Erickson-Viitanen S, Trainor GL, Seitz SP (1999a) Synthesis and evaluation of analogs of Efavirenz (SUSTIVATM) as HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem Lett 9:2805–2810

    CAS  PubMed  Article  Google Scholar 

  • Patel M, McHugh RJ Jr, Cordova BC, Klabe RM, Erickson-Viitanen S, Trainor GL, Ko SS (1999b) Synthesis and evaluation of benzoxazinones as HIV-1 reverse transcriptase inhibitors. Analogs of Efavirenz (SUSTIVATM). Bioorg Med Chem Lett 9:3221–3226

    CAS  PubMed  Article  Google Scholar 

  • Pedersen OS, Pedersen EB (2000) The flourishing syntheses of non-nucleoside reverse transcriptase inhibitors. Synthesis 4:479–495

    Article  Google Scholar 

  • Peske F, Savelsbergh A, Katunin VI, Rodnina MV, Wintermeyer W (2004) Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA–mRNA translocation. J Mol Biol 343:1183–1194

    CAS  PubMed  Article  Google Scholar 

  • Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    CAS  Article  Google Scholar 

  • Rappe AK, Colwell KS, Casewit CJ (1993) Application of a universal force field to metal complexes. Inorg Chem 32:3438–3450

    CAS  Article  Google Scholar 

  • Shi R, Sugawara I, Tohoku (2010) Development of new anti- tuberculosis drug candidates. J Exp Med 221:97–106

    CAS  Google Scholar 

  • Stover CK, Warrener P, Van Devanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966

    CAS  PubMed  Article  Google Scholar 

  • Supplementary Global Alliance for Tuberculosis Drug Development (2001) Scientific blueprint for TB drug development, Tuberculosis. 81 (Suppl.); 1–52

  • Takeichi T, Nakamura K, Agag T, Muto H (2004) Synthesis of cresol-based benzoxazine monomers containing allyl groups and the properties of the polymers therefrom. Des Monomers Polym 7:727–740

    CAS  Article  Google Scholar 

  • Vicens Q, Westhof E (2001) Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure 9:647–658

    CAS  PubMed  Article  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1996) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  Google Scholar 

  • Zhang Y (2005) The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 45:529–564

    CAS  PubMed  Article  Google Scholar 

  • Zhang PW, Terefenko EA, Fensome A, Wrobel J, Winneker R, Lundeen S, Marschker KB, Zhang ZM (2002a) 6-Aryl-1,4-dihydro-benzo[d][1,3]oxazin- 2-ones: a novel class of potent, selective, and orally active nonsteroidal progesterone receptor antagonists. J Med Chem 45:4379–4382

    CAS  PubMed  Article  Google Scholar 

  • Zhang P, Terefenko EA, Fensome A, Zhang Z, Zhu Y, Cohen J, Winneker R, Wrobel J, Yardley J (2002b) Potent nonsteroidal progesterone receptor agonists: synthesis and SAR study of 6-aryl benzoxazines. Bioorg Med Chem Lett 12:787–790

    CAS  PubMed  Article  Google Scholar 

  • Zhang PW, Terefenko EA, Fensome A, Wrobel J, Winneker R, Zhang ZM (2003) Novel 6-aryl-1,4-dihydrobenzo[d]oxazine-2-thiones as potent, selective, and orally active nonsteroidal progesterone receptor agonists. Bioorg Med Chem Lett 13:1313–1316

    CAS  PubMed  Article  Google Scholar 

  • Zhang Y, Post-Martens K, Denkin S (2006) New drug candidates and therapeutic targets for tuberculosis therapy. Drug Discov Today 11(1–2):21–27

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

Authors, RDK, acknowledge the financial support from CSIR, New Delhi, Govt. of India in the form of fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar S. Dawane.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2014 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamble, R.D., Hese, S.V., Meshram, R.J. et al. Green synthesis and in silico investigation of dihydro-2H-benzo[1,3]oxazine derivatives as inhibitors of Mycobacterium tuberculosis . Med Chem Res 24, 1077–1088 (2015). https://doi.org/10.1007/s00044-014-1165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1165-z

Keywords

  • PEG-400
  • 2H-benzo[1,3]oxazine
  • Antimycobacterial activity
  • Mycobacterium tuberculosis