Skip to main content
Log in

Quantitative structure activity relationship and binding investigation of N-alkyl glycine amides as inhibitors of Leukotriene A4 hydrolase

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The leukotriene A4 hydrolase (LTA4H) is a bifunctional zinc enzyme that catalyzes the final (rate-limiting) step in the synthesis of leukotriene B4 (LTB4), which is involved in several diseases. Many pharmaceutical attempts to exploit the LTA4H/LTB4 pathway have been unsatisfactory, hence, the development of new inhibitory drugs is essential. This paper describes the generation of a quantitative structure–activity relationship (QSAR) model on a series of 50 N-alkyl glycine amides with experimentally defined IC50. In addition, the optimized molecular structures of the inhibitors were docked into the active site of the enzyme to identify the enzyme-ligand interactions and quantify the estimated free energy of binding (ΔGbind). A simple four-descriptor QSAR model with high predictive capacity was obtained. The statistic parameters of the model are: regression coefficient (Rtest) of 0.714 and a standard deviation (Stest) of 0.696. The predicted inhibitory activity of 85 new N-alkyl glycine amides compounds was obtained with this QSAR model and these compounds were docked into LTA4H. Ten of the compounds present predicted IC50 values lower than 10 nM and binding poses and affinity values similar to the natural ligand (leukotriene A4), turning them into suitable candidates for experimental assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Back M, Bu DX, Branstrom R, Sheikine Y, Yan ZQ, Hansson GK (2005) Leukotriene B4 signaling through NF-{kappa}B-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc Natl Acad Sci USA 102:17501–17506

    Article  PubMed Central  PubMed  Google Scholar 

  • Barnes PJ (2001) Future advances in COPD therapy. Respiration 68:441–448

    Article  CAS  PubMed  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  CAS  PubMed  Google Scholar 

  • Çalışkan B, Banoglu E (2013) Overview of recent drug discovery approaches for new generation leukotriene A4 hydrolase inhibitors. Expert Opin Drug Discov 8:49–63

    Article  PubMed  Google Scholar 

  • Chen X, Wang S, Wu N, Yang CS (2004) Leukotriene A4 hydrolase as a target for cancer prevention and therapy. Curr Cancer Drug Targets 4:267–283

    Article  CAS  PubMed  Google Scholar 

  • Duchowicz PR, Castro EA, Fernandez FM, González MP (2005) A new search algorithm for QSPR/QSAR theories: normal boiling points of some organic molecules. Chem phys lett 412:376–380

    Article  CAS  Google Scholar 

  • Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi K, Goodarzi M, Tager AM, Luster AD, von Andrian UH (2003) Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat Immunol 4:965–973

    Article  CAS  PubMed  Google Scholar 

  • Haeggström JZ (2004) Leukotriene A4 hydrolase/aminopeptidase, the gatekeeper of chemotactic leukotriene B4 biosynthesis. J Biol Chem 279:50639–50642

    Article  PubMed  Google Scholar 

  • Hansch C (1990) Comprehensive drug design. Pergamon Press, New York

    Google Scholar 

  • Jain A, Sharma R, Chaturvedi SC (2011) Structural Insight for benzimidazole as angiotensin II AT1 receptor antagonist by using molecular property and biolgogical activity correlation: Qsar approach. Int J Pharm PharmSci 3:541–546

    CAS  Google Scholar 

  • Kirkland TA, Adler M, Bauman JG, Chen M, Haeggstrçm JZ, King B, Kochanny MJ, Liang AM, Mendoza L, Phillips GB, Thunnissen M, Trinh L, Whitlow M, Ye B, Ye H, Parkinson J, Guilford WJ (2008) Synthesis of glutamic acid analogs as potent inhibitors of leukotriene A4 hydrolase. Bioorgan Med Chem 16:4963–4983

    Article  CAS  Google Scholar 

  • Mercader AG, Duchowicz PR, Fernandez FM, Castro EA (2010) Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories. J Chem Inf Model 50:1542–1548

    Article  CAS  PubMed  Google Scholar 

  • Natarajan R, Basak SC, Mills D, Kraker JJ, Hawkinsb DM (2008) Quantitative structure-activity relationship modeling of mosquito repellents using calculated descriptors. Croat Chem Acta 81:333–340

    CAS  Google Scholar 

  • Nekoei M, Salami M, Dolatabadi M, Mohammadhosseini M (2011) A quantitative structure–activity relationship study of tetrabutylphosphonium bromide analogs as muscarinic acetylcholine receptors agonists. J Serb Chem Soc 76:1117–1127

    Article  CAS  Google Scholar 

  • Paz PB, Vega-Hissi EG, Estrada MR, Garro Martinez JC (2012) In silico modeling of the molecular structure and minding of leukotriene A4 into leukotriene A4 hydrolase. Chem Biol Drug Des 80:902–908

    Article  CAS  PubMed  Google Scholar 

  • Penning TD (2001) Inhibitors of Leukotriene A4 (LTA4) hydrolase as potential anti inflammatory agents. Curr Pharm Des 7:163–179

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Galicia G, Garduño-Juárez R, Correa-Basurto J, Deeb O (2012) Exploring QSAR for inhibitory effect a set of heterocyclic thrombin inhibitors by multilinear regression refined by artificial neural network and molecular docking simulations. J Enzym Inhib Med Chem 27:174–186

    Article  Google Scholar 

  • Rinaldo-Matthis A, Haeggström JZ (2010) Structures and mechanisms of enzymes in the leukotriene cascade. Biochimie 92:676–681

    Article  CAS  PubMed  Google Scholar 

  • Rudberg PC, Tholander F, Andberg M, Thunnissen MM, Haeggström JZ (2002) Leukotriene A4 hydrolase: identification of a common carboxylate recognition site for the epoxide hydrolase and aminopeptidase substrates. J Biol Chem 279:27376–27382

    Article  Google Scholar 

  • Sandanayaka V, Mamat B, Mishra RK, Winger J, Krohn M, Zhou LM, Keyvan M, Enache L, Sullins D, Onua E, Zhang J, Halldorsdottir G, Sigthorsdottir H, Thorlaksdottir A, Sigthorsson G, Thorsteinnsdottir M, Davies DR, Stewart LJ, Zembower DE, Andresson T, Kiselyov AS, Singh J, Gurney ME (2010a) Discovery of 4-[(2S)-2-{[4-(4-Chlorophenoxy)phenoxy]methyl}-1-pyrrolidinyl]butanoic Acid (DG-051) as a Novel Leukotriene A4 Hydrolase Inhibitor of Leukotriene B4 Biosynthesis. J Med Chem 53:573–585

    Article  CAS  PubMed  Google Scholar 

  • Sandanayaka V, Mamat B, Mishra RK, Winger J, Krohn M, Zhou LM, Keyvan M, Enache L, Sullins D, Onua E, Zhang J, Halldorsdottir G, Sigthorsdottir H, Thorlaksdottir A, Sigthorsson G, Thorsteinnsdottir M, Davies DR, Stewart LJ, Zembower DE, Andresson T, Kiselyov AS, Singh J, Gurney ME (2010b) Discovery of 4-[(2S)-2-{[4-(4-Chlorophenoxy)phenoxy]methyl}-1-pyrrolidinyl]butanoic Acid (DG-051) as a Novel Leukotriene A4 Hydrolase Inhibitor of Leukotriene B4 Biosynthesis. J Med Chem 53:573–585

    Article  CAS  PubMed  Google Scholar 

  • Shim YM, Paige M (2012) Leukotriene A4 hydrolase–an evolving therapeutic target. In: Khatami Mahin (ed) inflammatory diseases-immunopathology, clinical and pharmacological bases. InTech, west palm Beach, pp 254–278

    Google Scholar 

  • Tanis VM, Bacani GM, Blevitt JM, Chrovian CC, Crawford S, De Leon A, Fourie AM, Gomez L, Grice CA, Herman K, Kearney AM, Landry-Bayle AM, Lee-Dutra A, Nelson J, Riley JP, Santillán A Jr, Wiener JJM, Xue X, Young AL (2012) Azabenzthiazole inhibitors of leukotriene A4 hydrolase. Bioorg Med Chem Lett 22:7504–7511

    Article  CAS  PubMed  Google Scholar 

  • Thangapandian S, John S, Sakkiah S, Lee KW (2011) Pharmacophore-based virtual screening and Bayesian model for the identification of potential human leukotriene A4 hydrolase inhibitors. Eur J Med Chem 46:1593–1603

    Article  CAS  PubMed  Google Scholar 

  • Thangapandian S, John S, Son M, Arulalapperumal V, Lee KW (2013) Development of Predictive QSAR Model and Its Application in the Discovery of Human Leukotriene A4 Hydrolase Inhibitors. Future Med Chem 5:27–40

    Article  CAS  PubMed  Google Scholar 

  • Thunnissen MM, Nordlund P, Haeggström JZ (2001) Crystal structure of human leukotriene A(4) hydrolase, a bifunctional enzyme in inflammation. Nat Struct Biol 8:131–135

    Article  CAS  PubMed  Google Scholar 

  • Thunnissen MM, Andersson B, Samuelsson B, Wong CH, Haeggstrom JZ (2002) Crystal structures of leukotriene A4 hydrolase in complex with captopril and two competitive tight-binding inhibitors. J FASEB 16:1648–1650

    CAS  Google Scholar 

  • Todeschini R, Consonni V (2009) Molecular Descriptors for Chemoinformatics. Wiley, Weinheim

    Book  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock VINA: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comp Chem 31:455–461

    CAS  Google Scholar 

  • Vicente E, Duchowicz PR, Benítez D, Castro EA, Cerecettoc H, González M, Monge A (2010) Anti-T cruzi activities and QSAR studies of 3-arylquinoxaline-2-carbonitrile di-N-oxides. Bioorg Med Chem Lett 20:4831–4835

    Article  CAS  PubMed  Google Scholar 

  • Wold S, Eriksson L (1995) Chemometrics methods in molecular design. Wiley, Weinheim

    Google Scholar 

  • Wunder F, Tinel H, Kast R, Geerts A, Becker EM, Kolkhof P, Hutter J, Erguden J, Harter M (2010) Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT2) receptor. Br J Pharmacol 160:399–409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye B, Bauman J, Chen M, Davey D, Khim SK, King B, Kirkland T, Kochanny M, Liang A, Lentz D, Maya K, Mendoza L, Phillips G, Selchau V, Schlyer S, Tseng JL, Wei RG, Ye H, Parkinson J, Guilford WJ (2008) Synthesis of N-alkyl glycine amides as potent inhibitors of leukotriene A4 hydrolase. Bioorg Med Chem Lett 18:3891–3894

    Article  CAS  PubMed  Google Scholar 

  • Zarei K, Atabati M (2009) QSAR study of anti-HIV activities against HIV-1 and some of their mutant strains for a group of HEPT derivatives. J Chin Chem Soc 56:206–213

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) project PIP11220100100151 and Universidad Nacional de San Luis (UNSL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Garro Martinez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4929 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paz, P.B., Vega-Hissi, E.G., Andrada, M.F. et al. Quantitative structure activity relationship and binding investigation of N-alkyl glycine amides as inhibitors of Leukotriene A4 hydrolase. Med Chem Res 24, 496–504 (2015). https://doi.org/10.1007/s00044-014-1121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1121-y

Keywords

Navigation