Skip to main content

Advertisement

Log in

Comparative atom-based 3D QSAR study of 3-nitro-1H-1,2,4-triazole-based aliphatic and aromatic amines analogs for its anti-trypanosomal activities

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The present study describes development of 3D-QSAR on anti-trypanosomal activity based on selected pharmacophore hypothesis. The 3-nitro-1H-1,2,4-triazole-aliphatic and aromatic amines analogs have been selected for its anti-trypanosomal activity using PHASE. The present works also comprises molecular interaction study of 3-nitro-1H-1,2,4-triazole-based aliphatic and aromatic amines analogs on maestro 8.5 workstation. Anti-trypanosomal activities on various strains, e.g., L. donovani, T.b. rhodesiense, and T. Cruzi, of 3-nitro-1H-1,2,4-triazole-aliphatic and aromatic amines analogs have been reported in the literature. The 3D-QSAR study on Phase module comprises the five-point pharmacophore models for the anti-protozoan parasites activities, e.g., L. donovani (AGHRR.1009), T.b. rhodesiense (AGHRR.1604), and T. Cruzi (ADHRR.1067). The developed pharmacophore models on anti-protozoan activities share the common features, viz. consisting of one hydrogen bond acceptor (A), one hydrogen bond donor (D), one Hydrophobic (H), and two aromatic ring (R) as pharmacophoric feature. The diagnostic statics of selected 3D QSAR models shown the good predictive nature, e.g., correlation coefficient value (r 2 < 0.99), which is well anticipated by good cross-validated correlation coefficient (q 2 < 0.6). The QSAR models suggest that hydrophobic and aromatic characters are crucial for the anti-trypanosomal activities. The QSAR models also suggest that the inclusion of hydrophobic substituents would enhance the anti-trypanosomal activities. In addition, the hydrogen bond acceptor and hydrophobic character contribute positively to the anti-trypanosomal activities. The present study provides a set of guideline for rational drug design with more optimized agents based on predictive 3D-QSAR models for better anti-trypanosomal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal R, Jain P, Dikshit SN, Jain S (2013) 3D QSAR and docking studies of various amido and benzyl-substituted 3-amino-4-(2-cyanopyrrolidide)pyrrolidinyl analogs as DPP-IV inhibitors. Protein Pept Lett 20(9):1066–1078

    Article  CAS  PubMed  Google Scholar 

  • Athri P, Wenzler T, Ruiz P, Brun R, Boykin DW, Tidwell R et al (2006) 3D QSAR on a library of heterocyclic diamidine derivatives with antiparasitic activity. Bioorg Med Chem 14(9):3144–3152

    Article  CAS  PubMed  Google Scholar 

  • Augustyns K, Amssoms K, Yamani A, Rajan PK, Haemers A (2001) Trypanothione as a target in the design of antitrypanosomal and antileishmanial agents. Curr Pharm Des 7(12):1117–1141

    Article  CAS  PubMed  Google Scholar 

  • Barrett MP, Burchmore RJ, Stich A, Lazzari JO, Frasch AC, Cazzulo JJ et al (2003) The trypanosomiases. Lancet 362(9394):1469–1480

    Article  PubMed  Google Scholar 

  • Bern C, Montgomery SP, Herwaldt BL, Rassi A Jr, Marin-Neto JA, Dantas RO et al (2007) Evaluation and treatment of chagas disease in the United States: a systematic review. JAMA 298(18):2171–2181

    Article  CAS  PubMed  Google Scholar 

  • Castro JA, de Mecca MM, Bartel LC (2006) Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum Exp Toxicol 25(8):471–479

    Article  CAS  PubMed  Google Scholar 

  • Chatelain E, Ioset JR (2011) Drug discovery and development for neglected diseases: the DNDi model. Drug Des Dev Ther 5:175–181

    Google Scholar 

  • Chauviere G, Bouteille B, Enanga B, de Albuquerque C, Croft SL, Dumas M et al (2003) Synthesis and biological activity of nitro heterocycles analogous to megazol, a trypanocidal lead. J Med Chem 46(3):427–440

    Article  CAS  PubMed  Google Scholar 

  • Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006a) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20(10–11):647–671

    Article  CAS  PubMed  Google Scholar 

  • Dixon SL, Smondyrev AM, Rao SN (2006b) PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67(5):370–372

    Article  CAS  PubMed  Google Scholar 

  • Enanga B, Ariyanayagam MR, Stewart ML, Barrett MP (2003) Activity of megazol, a trypanocidal nitroimidazole, is associated with DNA damage. Antimicrob Agents Chemother 47(10):3368–3370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman P (1982) The development of 5-nitroimidazoles for the treatment and prophylaxis of anaerobic bacterial infections. J Antimicrob Chemother 10(Suppl A):23–33

    Article  CAS  PubMed  Google Scholar 

  • Linares GE, Ravaschino EL, Rodriguez JB (2006) Progresses in the field of drug design to combat tropical protozoan parasitic diseases. Curr Med Chem 13(3):335–360

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Osato T, Umezawa H (1953) A new antibiotic, azomycin. J Antibiot (Tokyo) 6(4):182

    CAS  Google Scholar 

  • Mahipal, Tanwar OP, Karthikeyan C, Moorthy NS, Trivedi P (2010) 3D QSAR of aminophenyl benzamide derivatives as histone deacetylase inhibitors. Med Chem 6(5):277–285

    Article  CAS  PubMed  Google Scholar 

  • Marrapu VK, Srinivas N, Mittal M, Shakya N, Gupta S, Bhandari K (2011) Design and synthesis of novel tetrahydronaphthyl azoles and related cyclohexyl azoles as antileishmanial agents. Bioorg Med Chem Lett 21(5):1407–1410

    Article  CAS  PubMed  Google Scholar 

  • Matter A, Keller TH (2008) Impact of non-profit organizations on drug discovery: opportunities, gaps, solutions. Drug Discov Today 13(7–8):347–352

    Article  PubMed  Google Scholar 

  • Miyamoto Y, Kalisiak J, Korthals K, Lauwaet T, Cheung DY, Lozano R et al (2013) Expanded therapeutic potential in activity space of next-generation 5-nitroimidazole antimicrobials with broad structural diversity. Proc Natl Acad Sci USA 110(43):17564–17569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papadopoulou MV, Trunz BB, Trunz BB, Bloomer W, Bloomer WD, McKenzie C, McKenzie CF, Wilkinson SR, Prasittichai C, Prasittichai CF et al (2011) Novel 3-nitro-1H-1,2,4-triazole-based aliphatic and aromatic amines as anti-chagasic agents. J Med Chem 54(23):8214–8223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perez-Molina JA, Sojo-Dorado J, Norman F, Monge-Maillo B, Diaz-Menendez M, Albajar-Vinas P et al (2013) Nifurtimox therapy for Chagas disease does not cause hypersensitivity reactions in patients with such previous adverse reactions during benznidazole treatment. Acta Trop 127(2):101–104

    Article  CAS  PubMed  Google Scholar 

  • Pink R, Hudson A, Mouries MA, Bendig M (2005) Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 4(9):727–740

    Article  CAS  PubMed  Google Scholar 

  • Torreele E, Bourdin TB, Tweats D, Kaiser M, Brun R, Mazue G et al (2010) Fexinidazole—a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl Trop Dis 4(12):e923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verma RP, Hansch C (2010) QSAR modeling of taxane analogues against colon cancer. Eur J Med Chem 45(4):1470–1477

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SR, Bot C, Kelly JM, Hall BS (2011) Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Curr Top Med Chem 11(16):2072–2084

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Authors declare that they have no conflict of interest by any means with respect to the instant research manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Agrawal.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Agrawal, R. & Bawa, S. Comparative atom-based 3D QSAR study of 3-nitro-1H-1,2,4-triazole-based aliphatic and aromatic amines analogs for its anti-trypanosomal activities. Med Chem Res 24, 22–31 (2015). https://doi.org/10.1007/s00044-014-1085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1085-y

Keywords

Navigation