Medicinal Chemistry Research

, Volume 23, Issue 12, pp 5063–5073 | Cite as

Highly potent analgesic activity of monoterpene-derived (2S,4aR,8R,8aR)-2-aryl-4,7-dimethyl-3,4,4a,5,8,8a-hexahydro-2H-chromene-4,8-diols

  • Irina Il’ina
  • Oksana Mikhalchenko
  • Alla Pavlova
  • Dina Korchagina
  • Tat’yana Tolstikova
  • Konstantin VolchoEmail author
  • Nariman Salakhutdinov
  • Evgeniy Pokushalov
Original Research


New chiral heterocyclic compounds with a hexahydro-2H-chromene framework were synthesized by reactions of (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol with aromatic aldehydes in the presence of montmorillonite clay. The analgesic activity of the compounds was studied in vivo. The majority of these compounds showed significant analgesic activity in the acetic acid-induced writhing test; the compounds containing one hydroxy and one methoxy substituents also showed analgesic activity in the hot-plate test. (2S,4aR,8R,8aR)-2-(3-Hydroxy-4-methoxyphenyl)-4,7-dimethyl-3,4,4a,5,8,8a-hexahydro-2H-chromene-4,8-diol was as effective as the diclofenac sodium reference taken in the same dose in both tests. It has low acute toxicity and is very promising for further development.


Terpene Chromene Heterocyclic compounds Analgesic activity Acetic acid-induced writhing test Hot-plate test 



Authors are grateful to the Presidium of Russian Academy of Sciences (program N 28.5), Presidium of Siberian Branch of Russian Academy of Sciences (Interdisciplinary integration Project No. 54), and Russian Foundation for Basic Research (Grant No. 13-03-00206a) for the financial support.

Supplementary material

44_2014_1071_MOESM1_ESM.doc (544 kb)
Supplementary material 1 (DOC 544 kb)


  1. Ardashov OV, Pavlova AV, Il’ina IV, Morozova EA, Korchagina DV, Karpova EV, Volcho KP, Tolstikova TG, Salakhutdinov NF (2011) Highly potent activity of (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol in animal models of Parkinson’s disease. J Med Chem 54:3866–3874CrossRefPubMedGoogle Scholar
  2. Carter GT (2011) Natural products and pharma: strategic changes spur new opportunities. Nat Prod Rep 28:1783–1789CrossRefPubMedGoogle Scholar
  3. De Petrocellis L, Ligresti A, Moriello AS, Iappelli M, Verde R, Stott CG, Cristino L, Orlando P, Marzo V (2013) Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms. British J Pharm 168:79–102CrossRefGoogle Scholar
  4. Drysdale AJ, Platt B (2003) Cannabinoids: mechanisms and therapeutic applications in the CNS. Cur Med Chem 10:2719–2732CrossRefGoogle Scholar
  5. Eddy NB, Leimbach D (1953) Studies of anesthetics. J Pharm Exp Ther 107:385–393Google Scholar
  6. EPA (Environmental Protection Agency) (2002) Health effects test guidelines: OPPTS 870.1100. Acute oral toxicity. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  7. Finn DP, Chapman V (2004) Cannabinoids as analgesic agents: evidence from in vivo studies. Cur Neuropharm 2:75–89CrossRefGoogle Scholar
  8. Hill AJ, Mercier MS, Hill TDM, Glyn SE, Jones NA, Yamasaki Y, Futamura T, Duncan M, Stott CG, Stephens GJ, Williams CM, Whalley BJ (2012) Cannabidivarin is anticonvulsant in mouse and rat. British J Pharm 167:1629–1642CrossRefGoogle Scholar
  9. Il’ina IV, Volcho KP, Korchagina DV, Barkhash VA, Salakhutdinov NF (2007) Reactions of allyl alcohols of the pinane series and of their epoxides in the presence of montmorillonite clay. Helv Chim Acta 90(2):353–368CrossRefGoogle Scholar
  10. Il’ina IV, Volcho KP, Salakhutdinov NF (2008) Acid-catalyzed transformations of pinane terpenoids. New prospects Rus J Org Chem 44:1–23CrossRefGoogle Scholar
  11. Il’ina IV, Korchagina DV, Volcho KP, Salakhutdinov NF (2010) Reaction of (–)-cis-verbenol epoxide with aromatic aldehydes over montmorillonite K10 clay. Rus J Org Chem 46:998–1001CrossRefGoogle Scholar
  12. Il’ina IV, Volcho KP, Mikhalchenko OS, Korchagina DV, Salakhutdinov NF (2011) Reactions of verbenol epoxide with aromatic aldehydes containing hydroxy or methoxy groups in the presence of montmorillonite clay. Helv Chim Acta 94:502–513CrossRefGoogle Scholar
  13. Koster R, Anderson M, De Beer EJ (1959) Acetic acid for analgesic screening. Fed Proc 18:412–415Google Scholar
  14. Kurbakova S, Il’ina I, Pavlova A, Morozova E, Korchagina D, Yarovaya O, Tolstikova T, Volcho K, Salakhutdinov N (2013) Synthesis and analgesic activity of monoterpenoid derived 2-aryl-4,4,7-trimethyl-4a,5,8,8a-tetrahydro-4H-benzo[d][1,3]dioxin-8-ols. Med Chem Res. doi: 10.1007/s00044-013-0772-4 Google Scholar
  15. Lachance H, Wetzel S, Kumar K, Waldmann H (2012) Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem 55:5989–6001CrossRefPubMedGoogle Scholar
  16. Manzanares J, Julian MD, Carrascosa A (2006) Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes. Cur Neuropharm 4:239–257CrossRefGoogle Scholar
  17. Mikhalchenko O, Il’ina I, Pavlova A, Morozova E, Korchagina D, Tolstikova T, Pokushalov E, Volcho K, Salakhutdinov N (2013) Synthesis and analgesic activity of new heterocyclic compounds derived from monoterpenoids. Med Chem Res 22:3026–3034CrossRefGoogle Scholar
  18. Mishra BB, Tiwari VK (2011) Natural products: an evolving role in future drug discovery. Eur J Med Chem 46:4769–4807CrossRefPubMedGoogle Scholar
  19. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335PubMedCentralCrossRefPubMedGoogle Scholar
  20. Pacher P (2013) Towards the use of non-psychoactive cannabinoids for prostate cancer. British J Pharm 168:76–78CrossRefGoogle Scholar
  21. Pavlova AV, Volcho KP, Tolstikova TG (2013) Application of monoterpenoids and their derivatives against CNS disorders. In: Atta-ur-Rahman, Choudhary MI (eds) Frontiers in CNS drug discovery. Bentham Science Publishers, Bussum, pp 334–380CrossRefGoogle Scholar
  22. Rajasekharprasad K, Nagappa Lokanatharai KM (1998) Synthesis and characterization of new mesogenic 4-(n-alkoxy)-3-methoxy-benzaldehyde semicarbazones. Synth Com 28:4605–4610CrossRefGoogle Scholar
  23. Syubaev RD, Mashkovskii MD, Shvarts GY, Pokryshkin VI (1986) Comparative pharmacological activity of modern nonsteroidal antiinflammatory preparations. Pharm Chem J 20:17–22CrossRefGoogle Scholar
  24. Tolstikova TG, Pavlova AV, Morozova EA, Il’ina IV, Ardashov OV, Korchagina DV, Volcho KP, Salakhutdinov NF (2011) 2-(4-Hydroxy-3-methoxyphenyl)-4,7-dimethyl-3,4,4a,5,8,8a-hexahydro-2H-chromen-4,8-diol-novel analgesic agent. Patent RU 2430100Google Scholar
  25. Valdeolivas S, Satta V, Pertwee RG, Fernandez-Ruiz J, Sagredo O (2012) Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington’s disease: role of CB1 and CB2 receptors. ACS Chem Neurosci 3:400–406PubMedCentralCrossRefPubMedGoogle Scholar
  26. Volcho KP, Salakhutdinov NF (2008) Transformations of terpenoids on acidic clays. Mini Rev Org Chem 5:345–354CrossRefGoogle Scholar
  27. Volcho KP, Salakhutdinov NF, Barkhash VA (1999) A new way to accelerate reactions catalyzed by clays. Russ J Org Chem 35:1554–1555Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Irina Il’ina
    • 1
  • Oksana Mikhalchenko
    • 1
  • Alla Pavlova
    • 1
  • Dina Korchagina
    • 1
  • Tat’yana Tolstikova
    • 1
  • Konstantin Volcho
    • 1
    Email author
  • Nariman Salakhutdinov
    • 1
    • 2
  • Evgeniy Pokushalov
    • 3
  1. 1.Novosibirsk Institute of Organic ChemistrySiberian Branch, Russian Academy of SciencesNovosibirskRussian Federation
  2. 2.Novosibirsk State UniversityNovosibirskRussian Federation
  3. 3.State Research Institute of Circulation PathologyNovosibirskRussian Federation

Personalised recommendations