Advertisement

Medicinal Chemistry Research

, Volume 23, Issue 12, pp 5102–5109 | Cite as

Ritodrine inhibits neuronal nitric oxide synthase, a potential link between tocolysis and autism

  • Ghadeer A. R. Y. Suaifan
  • Mayadah B. Shehadeh
  • Hebah A. N. Al-Ijel
  • Khuloud T. Al-Jamal
  • Mutasem O. Taha
Original Research

Abstract

Statistical association between congenital autism and prenatal exposure to ritodrine (4-(2-((1R,2S)-1-hydroxy-1-(4-hydroxyphenyl)propan-2-ylamino)ethyl)phenol) as a tocolytic agent was a matter of concern. Moreover, neuronal nitric oxide momentous role in various behavioral and cognitive functions was reported. In this context, a correlation between prenatal exposures to ritodrine, neuronal nitric oxide level and autism occurrence must be investigated. For this reason, we proposed possible inhibition of neuronal nitric oxide synthase (nNOS) by ritodrine. An insight toward our hypothesis approval was done through docking ritodrine into the catalytic pocket of nNOS. Apparently, ritodrine shared at least five critical binding interactions with a potent nNOS inhibitor (PDB code: JI7). Subsequent in vitro experiment pointed out that ritodrine indeed inhibited the enzymatic activity of nNOS at low micromolar level. As a conclusion, ritodrine should not be used as a tocolytic agent but as a novel non peptidomimetic nNOS inhibitor lead scaffold for future optimization.

Graphical Abstract

(A) Ritodrine chemical structure (B) Docked pose of ritodrine into nNOS-binding pocket (PDB code: 3B3P, resolution 2.6 Ǻ) (C) Docked pose of inhibitor JI7 (green) as produced by docking simulation and the crystallographic structure of this inhibitor within nNOS

Keywords

Autism Molecular docking In vitro evaluation Neuronal nitric oxide synthase Tocolysis 

Notes

Acknowledgments

The authors would like to acknowledge the Deanship of the Scientific Research, The University of Jordan (Grant number 1444) and Hamdi Mango Center for Scientific Research and Sandeep Khosla (King’s College London) for help with in vitro assays.

Supplementary material

44_2014_1066_MOESM1_ESM.docx (640 kb)
Supplementary material 1 (DOCX 640 kb)

References

  1. Abu Hammad AM, Afifi FU, Taha MO (2007) Combining docking, scoring and molecular field analyses to probe influenza neuraminidase-ligand interactions. J Mol Graph Model 26:443–456. doi: 10.1016/j.jmgm.2007.02.002 CrossRefPubMedGoogle Scholar
  2. Akbarian S, Bunney WE, Potkin SG, Wigal SB, Hagman JO, Sandman CA, Jones EG (1993) Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 50:169–177CrossRefPubMedGoogle Scholar
  3. Berkman ND et al (2003) Tocolytic treatment for the management of preterm labor: a review of the evidence. Am J Obstet Gynecol 188:1648–1659. doi: 10.1067/mob.2003.356 CrossRefPubMedGoogle Scholar
  4. Bloom FE (1993) Advancing a neurodevelopmental origin for schizophrenia. Arch Gen Psychiatry 50:224–227CrossRefPubMedGoogle Scholar
  5. Bugajski J, Gadek-Michalska A, Bugajski A (2004) Nitric oxide and prostaglandin systems in the stimulation of hypothalamic-pituitary-adrenal axis by neurotransmitters and neurohormones. J Physiol Pharmacol 55:679–703PubMedGoogle Scholar
  6. Bustanji Y, Taha MO, Yousef AM, Al-Bakri AG (2006) Berberine potently inhibits protein tyrosine phosphatase 1B: investigation by docking simulation and experimental validation. J Enzyme Inhib Med Chem 21:163–171. doi: 10.1080/14756360500533026 CrossRefPubMedGoogle Scholar
  7. Chiavegatto S, Nelson RJ (2003) Interaction of nitric oxide and serotonin in aggressive behavior. Horm Behav 44:233–241. doi: 10.1016/j.yhbeh.2003.02.002 CrossRefPubMedGoogle Scholar
  8. Dennedy MC, Friel AM, Gardeil F, Morrison JJ (2001) Beta-3 versus beta-2 adrenergic agonists and preterm labour: in vitro uterine relaxation effects. Br J Obstet Gynaecol 108:605–609. doi: 10.1111/j.1471-0528.2001.00147.x CrossRefGoogle Scholar
  9. Derbent A, Simavli S, Gümüş İ, Tatli M, Turhan N (2011) Nifedipine for the treatment of preterm labor in twin and singleton pregnancies. Arch Gynecol Obstet 284:821–826. doi: 10.1007/s00404-010-1751-3 CrossRefPubMedGoogle Scholar
  10. Edwards TM, Rickard NS (2007) New perspectives on the mechanisms through which nitric oxide may affect learning and memory processes. Neurosci Biobehav Rev 31:413–425. doi: 10.1016/j.neubiorev.2006.11.001 CrossRefPubMedGoogle Scholar
  11. Fujimoto S, Akahane M, Sakai A (1986) Concentrations of ritodrine hydrochloride in maternal and fetal serum and amniotic fluid following intravenous administration in late pregnancy. Eur J Obstet Gynecol Reprod Biol 23:145–152CrossRefPubMedGoogle Scholar
  12. Fujimoto S, Tanaka T, Akahane M (1991) Levels of ritodrine hydrochloride in fetal blood and amniotic fluid following long-term continuous administration in late pregnancy. Eur J Obstet Gynecol Reprod Biol 38:15–18CrossRefPubMedGoogle Scholar
  13. Galecki P, Maes M, Florkowski A, Lewinski A, Galecka E, Bienkiewicz M, Szemraj J (2011) Association between inducible and neuronal nitric oxide synthase polymorphisms and recurrent depressive disorder. J Affect Disorders 129:175–182. doi: 10.1016/j.jad.2010.09.005 CrossRefPubMedGoogle Scholar
  14. Galimberti D et al (2005) Association of neuronal nitric oxide synthase C276T polymorphism with Alzheimer’s disease. J Neurol 252:985–986. doi: 10.1007/s00415-005-0783-2 CrossRefPubMedGoogle Scholar
  15. Ghigo D, Riganti C, Gazzano E, Costamagna C, Bosia A (2006) Cycling of NADPH by glucose 6-phosphate dehydrogenase optimizes the spectrophotometric assay of nitric oxide synthase activity in cell lysates. Nitric Oxide 15:148–153. doi: 10.1016/j.niox.2006.01.002 CrossRefPubMedGoogle Scholar
  16. Gomez-Vidal JA, Martasek P, Roman LJ, Silverman RB (2004) Potent and selective conformationally restricted neuronal nitric oxide synthase inhibitors. J Med Chem 47:703–710. doi: 10.1021/jm030297m CrossRefPubMedGoogle Scholar
  17. Haddersalgra M, Touwen BCL, Huisjes HJ (1986) Long-term follow-up of children prenatally exposed to ritodrine. Br J Obstet Gynaecol 93:156–161. doi: 10.1111/j.1471-0528.1986.tb07880.x CrossRefGoogle Scholar
  18. Hah JM, Silverman RB (2001) Reduced amide bond peptidomimetics. (4s)-N-(4-amino-5- aminoalkylaryl aminopentyl-N′-nitroguanidines, potent and selective inhibitors of neuronal nitric oxide synthase. Abstr Pap Am Chem S 222:U683Google Scholar
  19. Hah JM, Martasek P, Roman LJ, Silverman RB (2003) Aromatic reduced amide bond peptidomimetics as selective inhibitors of neuronal nitric oxide synthase. J Med Chem 46:1661–1669. doi: 10.1021/jm0202932 CrossRefPubMedGoogle Scholar
  20. Hancock DB, Martin ER, Vance JM, Scott WK (2008) Nitric oxide synthase genes and their interactions with environmental factors in Parkinson’s disease. Neurogenetics 9:249–262. doi: 10.1007/s10048-008-0137-1 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Heneka MT, Feinstein DL (2001) Expression and function of inducible nitric oxide synthase in neurons. J Neuroimmunol 114:8–18. doi: 10.1016/s0165-5728(01)00246-6 CrossRefPubMedGoogle Scholar
  22. Huang H, Martasek P, Roman LJ, Masters BSS, Silverman RB (1999) N-omega-nitroarginine-containing dipeptide amides. Potent and highly selective inhibitors of neuronal nitric oxide synthase. J Med Chem 42:3147–3153. doi: 10.1021/jm990111c CrossRefPubMedGoogle Scholar
  23. Igarashi J et al (2009) Crystal structures of constitutive nitric oxide synthases in complex with de novo designed inhibitors. J Med Chem 52:2060–2066. doi: 10.1021/jm900007a PubMedCentralCrossRefPubMedGoogle Scholar
  24. Ji H, Gomez-Vidal JA, Martasek P, Roman LJ, Silverman RB (2006) Conformationally restricted dipeptide amides as potent and selective neuronal nitric oxide synthase inhibitors. J Med Chem 49:6254–6263. doi: 10.1021/jm0604124 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Ji H et al (2008) Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors. J Am Chem Soc 130:3900–3914. doi: 10.1021/ja0772041 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Kim H-W et al (2009) Family-based association study between NOS-I and -IIA polymorphisms and autism spectrum disorders in Korean trios. Am J Med Genet 150B:300–306. doi: 10.1002/ajmg.b.30798 CrossRefPubMedGoogle Scholar
  27. Lemmon G, Meiler J (2013) Towards ligand docking including explicit interface water molecules. PLoS ONE 8:e67536. doi: 10.1371/journal.pone.0067536 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Leveno KJ, Little BB, Cunningham FG (1990) The national impact of ritodrine hydrochloride for inhibition of preterm labor. Obstet Gynecol 76:12–15PubMedGoogle Scholar
  29. Liu S, Fu R, Zhou LH, Chen SP (2012) Application of consensus scoring and principal component analysis for virtual screening against beta-secretase (BACE-1). PLoS ONE 7:e38086PubMedCentralCrossRefPubMedGoogle Scholar
  30. Muegge I (2000) A knowledge-based scoring function for protein-ligand interactions: probing the reference state. Perspect Drug Discov 20:99–114. doi: 10.1023/a:1008729005958 CrossRefGoogle Scholar
  31. Patrick GL (2005) An introduction to medicinal chemistry, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  32. Schwarz MK, Page P (2003) Preterm labour: an overview of current and emerging therapeutics. Curr Med Chem 10:1441–1468. doi: 10.2174/0929867033457331 CrossRefPubMedGoogle Scholar
  33. Seo J, Igarashi J, Li H, Martasek P, Roman LJ, Poulos TL, Silverman RB (2007) Structure-based design and synthesis of N-omega-nitro-l-arginine-containing peptidomimetics as selective inhibitors of neuronal nitric oxide synthase. Displacement of the heme structural water. J Med Chem 50:2089–2099. doi: 10.1021/jm061305c PubMedCentralCrossRefPubMedGoogle Scholar
  34. Silverman RB (2009) Design of selective neuronal nitric oxide synthase inhibitors for the prevention and treatment of neurodegenerative diseases. Acc Chem Res 42:439–451. doi: 10.1021/ar800201v PubMedCentralCrossRefPubMedGoogle Scholar
  35. Suaifan GARY, Goodyer CLM, Threadgill MD (2010) Synthesis of N-(Methoxycarbonylthienylmethyl) thioureas and evaluation of their interaction with inducible and neuronal nitric oxide synthase. Molecules 15:3121–3134. doi: 10.3390/molecules15053121 CrossRefPubMedGoogle Scholar
  36. Suaifan GARY, Al-Ejal HAN, Taha MO (2012a) Pharmacophore and QSAR modeling of endothelial nitric oxide synthase inhibitors and subsequent validation and in silico search for new hits. JJPS 5:220–242Google Scholar
  37. Suaifan GARY, Shehadehh M, Al-Ijel H, Taha MO (2012b) Extensive ligand-based modeling and in silico screening reveal nanomolar inducible nitric oxide synthase (iNOS) inhibitors. J Mol Graph Model 37:1–26. doi: 10.1016/j.jmgm.2012.04.001 CrossRefPubMedGoogle Scholar
  38. Van Lierde M, Thomas K (1982) Ritodrine concentrations in maternal and fetal serum and amniotic fluid. J Perinat Med 10:119–124CrossRefPubMedGoogle Scholar
  39. Volke V, Wegener G, Bourin M, Vasar E (2003) Antidepressant- and anxiolytic-like effects of selective neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole in mice. Behav Brain Res 140:141–147. doi: 10.1016/s0166-4328(02)00312-1 CrossRefPubMedGoogle Scholar
  40. Witter FR, Zimmerman AW, Reichmann JP, Connors SL (2009) In utero beta 2 adrenergic agonist exposure and adverse neurophysiologic and behavioral outcomes. Am J Obstet Gynecol 201:553–559. doi: 10.1016/j.ajog.2009.07.010 CrossRefPubMedGoogle Scholar
  41. Zhou L, Zhu D-Y (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20:223–230. doi: 10.1016/j.niox.2009.03.001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ghadeer A. R. Y. Suaifan
    • 1
    • 2
  • Mayadah B. Shehadeh
    • 1
  • Hebah A. N. Al-Ijel
    • 1
  • Khuloud T. Al-Jamal
    • 3
  • Mutasem O. Taha
    • 1
    • 2
  1. 1.Department of Pharmaceutical Sciences, Faculty of PharmacyThe University of JordanAmmanJordan
  2. 2.Drug Discovery Unit, Faculty of PharmacyThe University of JordanAmmanJordan
  3. 3.Institute of Pharmaceutical ScienceKing’s College LondonLondonUK

Personalised recommendations