Medicinal Chemistry Research

, Volume 23, Issue 11, pp 4680–4691 | Cite as

Dual and/or selective DNA-PK, PI3K inhibition and isoform selectivity of some new and known 2-amino-substituted-1,3-benzoxazines and substituted-1,3-naphthoxazines

  • Rick Morrison
  • Tyson Belz
  • Saleh K. Ihmaid
  • Jasim M. A. Al-RawiEmail author
  • Michael J. Angove
Original Research


The 2-morpholino-substituted-benzoxazines 7a and 7b were used in the synthesis of 2-morpholino-di-O-benzyl, O-pyridin-2yl, 3-yl and 4yl-methoxy)-1,3-benzoxazines 8a–8d, and N-(2-morpholino-4-oxo-4H-benz[e][1,3]oxazin-7-yl)-N-(pyridin-2-and-3-ylmethyl)acetamides 8e and 8f. The DNA-dependent protein kinase (DNA-PK) and phosphatidylinositol 3-kinase (PI3K) α, β, γ, and δ isoforms were studied for the new compounds 8a8f and PI3K for the 18 previously synthesized compounds 926. The most active DNA-PK inhibitors were the 2-morpholino-O-substituted linear or angular naphthoxazine compounds 1820 and 2122 which showed potent and selective DNA-PK activity (IC50 from 0.01 to 2.43 µM) over PI3K. 8-(2-(4-Methylpiperazin-1-yl)ethoxy)-2-morpholino compound 13, and 8-methyl-2-(pyridin-3-yl(pyridin-3-ylmethyl)amino)-7-(pyridin-3-ylmethoxy) compound 25 showed selective DNA-PK inhibition. 2-morpholino-8-substituted-benzoxazine 9 (8-ph) and 1012 (8-(pyridine-2-, 3-, or 4-ylmethoxy) showed high-to-moderate inhibition of PI3K and DNA-PK. A similar pattern for DNA-PK nonselectivity over PI3K was observed for compounds with 7,8-O-bis-substituted 8a, 8c, and 8d. No DNA-PK selectivity over PI3K was observed regardless whether the substitution was phenyl, pyridin-2-ylmethoxy, pyridin-3-ylmethoxy, and pyridin-4-ylmethoxy.


Synthesis 2-Amino-substituted-1,3-benzoxazines 2-Amino-naphthoxazines DNA-PK PI3K isoform inhibition and selectivity 

Supplementary material

44_2014_1037_MOESM1_ESM.pdf (844 kb)
Supplementary material 1 (PDF 844 kb)


  1. Blois J, Yuan H, Smith A, Pacold ME, Weissleder R, Cantley LC, Josephson L (2008) Slow self-activation enhances the potency of viridin prodrugs. J Med Chem 51:4699–4707PubMedCentralCrossRefPubMedGoogle Scholar
  2. Brown TM, Cookset CJ, Crich D, Dronsfield, AT (1992) The Kolbe–Schmitt reaction revisited. Education in chemistry pp. 22–23Google Scholar
  3. Cano C, Saravanan K, Bailey C, Bardos J, Curtin NJ, Frigerio M, Golding BT, Hardcastle IR, Hummersone MG, Menear KA, Newell DR, Richardson CJ, Shea K, Smith GCM, Thommes P, Ting A, Griffin RJ (2013) 1-Substituted (dibenzo[b, d]thiophen-4-yl)-2-morpholino-4H-chromen-4-ones endowed with dual DNA-PK/PI3K inhibitory activity. J Med Chem 56:6386–6401CrossRefPubMedGoogle Scholar
  4. Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24:949–961CrossRefPubMedGoogle Scholar
  5. Curtin NJ (2012) DNA repair dysregulation from cancer driver to therapeutic targe. Nat Rev Cancer 12:801–817CrossRefPubMedGoogle Scholar
  6. Desage-El Murr M, Cano C, Golding BT, Hardcastle IR, Hummersome M, Frigerio M, Curtin NJ, Menear K, Richardson C, Smith GCM, Griffin RJ (2008) 8-Biarylchromen-4-one inhibitors of the DNA-dependent protein kinase (DNA-PK). Bioorg Med Chem Lett 18:4885–4890CrossRefPubMedGoogle Scholar
  7. Edgar KA, Wallin JJ, Berry M, Lee LB, Prior WW, Sampath D, Friedman LS, Belvin M (2010) Isoform-specific phosphoinositide 3-kinase inhibitors exert distinct effects in solid tumors. Cancer Res 70:1164–1172CrossRefPubMedGoogle Scholar
  8. Finlay MRV, Griffin RJ (2012) Modulation of DNA repair by pharmacological inhibitors of the PIKK protein kinase family. Bioorg Med Chem Lett 22:5352–5359CrossRefPubMedGoogle Scholar
  9. Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A, Pearce W, Meek S, Millan J, Cutillas PR, Smith AJH, Ridley AJ, Ruhrberg C, Gerhardt H, Vanhaesebroeck B (2008) Angiogenesis selectively requires the p110a isoform of PI3K to control endothelial cell migration. Nature 453:662–666CrossRefPubMedGoogle Scholar
  10. Hardcastle IR, Cockcroft X, Curtin NJ, Dessage-El Murr M, Leahy JJ, Stockley M, Golding BT, Rigoreau L, Richardson C, Smith GCM, Griffin RJ (2005) Discovery of potent chromen-4-one inhibitors of the dna-dependent protein kinase (DNA-PK) using a small-molecule library approach. J Med Chem 48:7829–7846CrossRefPubMedGoogle Scholar
  11. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma R (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8:193–204CrossRefPubMedGoogle Scholar
  12. Howes AL, Chiang GG, Lang ES, Ho CB, Powis G, Vuori K, Abraham RT (2007) The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther 6:2505–2514CrossRefPubMedGoogle Scholar
  13. Hrdina R, Hrdinová M, Burgert L, Bures V, Lewandowski H, Sulákova R (2007) Complex compounds of boric acid, salicylic acid or its derivatives and silver, method of their preparation, and a preparation containing these compounds for killing moulds, fungi and ligniperdous insects. International Patent WO 2008/058490 A1Google Scholar
  14. Ihmaid S, Al-Rawi J, Bradley C (2010) Synthesis, structural elucidation and DNA-dependant protein kinase and antiplatelet studies of 2-amino-[5, 6, 7, 8-mono and 7, 8-di-substituted]-1,3-benzoxazines. Eur J Med Chem 45:4934–4946CrossRefPubMedGoogle Scholar
  15. Ihmaid S, Al-Rawi J, Bradley C, Angove MJ, Robertson MN, Clark RL (2011) Synthesis, structural elucidation, DNA-PK inhibition, homology modellingand anti-platelet activity of morpholino-substituted-1,3-naphth-oxazines. Bioorg Med Chem 19:3983–3994CrossRefPubMedGoogle Scholar
  16. Ihmaid SK, Al-Rawi JMA, Bradley CJ, Angove MJ, Robertson MN (2012) Synthesis, DNA-PK inhibition, anti-platelet activity studies of 2-(N-substituted-3-aminopyridine)-substituted-1,3-benzoxazines and DNA-PK and PI3K inhibition, homology modelling studies of 2-morpholino-(7,8-di and 8-substituted)-1,3-benzoxazines. Eur J Med Chem 57:85–101CrossRefPubMedGoogle Scholar
  17. Izzard RA, Jackson SP, Smith GCM (1999) Competitive and noncompetitive inhibition of the DNA-dependent protein kinase. Cancer Res 59:2581–2586PubMedGoogle Scholar
  18. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078PubMedCentralCrossRefPubMedGoogle Scholar
  19. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254CrossRefPubMedGoogle Scholar
  20. Kuang RR, Qian F, Li Z, Wei DZ, Tang Y (2006) Action mechanisms and structure–activity relationships of PI3Kγ inhibitors on the enzyme: a molecular modelling study. Eur J Med Chem 41:558–565CrossRefPubMedGoogle Scholar
  21. Ma WW, Adjei AA (2009) Novel agents on the horizon for cancer therapy. CA-Cancer J Clin 59:111–137CrossRefPubMedGoogle Scholar
  22. Pritchard KM, Al-Rawi JM, Hughes AB (2005) Generalized method for the production of 1,3-benzoxazine, 1,3-benzothiazine, and quinazoline derivatives from 2-(hydroxy, thio, or amino) aromatic acids using triphenylphosphine thiocyanogen. Synth Commun 35:1601–1611CrossRefGoogle Scholar
  23. Pritchard KM, Al-Rawi J, Bradley C (2007) Synthesis, identification and antiplatelet evaluation of 2-morpholino substituted benzoxazines. Eur J Med Chem 42:1200–1210CrossRefPubMedGoogle Scholar
  24. Shuttleworth SJ, Silva FA, Cecil ARL, Tomassi CD, Hill TJ, Raynaud FI, Clarke PA, Workman P (2011) Progress in the preclinical discovery and clinical development of Class I and dual Class I/IV phosphoinositide 3-Kinase (PI3K) inhibitors. Curr Med Chem 18:2686–2714PubMedCentralCrossRefPubMedGoogle Scholar
  25. Smith GCM, Jackson SP (2003) Handbook of Cell Signaling, vol 1. Elsevier Academic Press, New York, pp 557–561CrossRefGoogle Scholar
  26. Smith A, Blois J, Yuan H, Aikawa E, Ellson C, Figueiredo JL, Weissleder R, Kohler R, Yaffe MB, Cantley LC, Josephson L (2009) The antiproliferative cytostatic effects of a self-activating viridin prodrug. Mol Cancer Therap 8:1666–1675CrossRefGoogle Scholar
  27. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6:909–919CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rick Morrison
    • 1
  • Tyson Belz
    • 1
  • Saleh K. Ihmaid
    • 1
  • Jasim M. A. Al-Rawi
    • 1
    Email author
  • Michael J. Angove
    • 1
  1. 1.School of Pharmacy and Applied ScienceLa Trobe UniversityBendigoAustralia

Personalised recommendations