Skip to main content
Log in

Evaluation of antioxidant activity of new constituents from the fruits of Lycium chinense

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Two new compounds as labd-7,11-dien-3β, 13α-diol-3α-l-arabinopyranosyl-(2a → 1b)-α-l-arabinopyranosyl-(2b → 1c)-α-l-arabinopyranosyl-(2c → 1d)-α-l-arabinopyranosyl-(2d → 1e)-α-l-arabinopyranosyl-(2e → 1f)-α-l-arabinopyranosyl-(2f → 1g)-α-l-arabinopyranoside (1), and 5 (6), 11 (12), 15 (15′), 5′ (6′), 11′ (12′)-decadehydro-β-carotenyl-4β,4′β-diol-4-α-l-arabinopyranosyl-(2a → 1b)-α-l-arabinopyranosyl-(2b → 1c)-α-l-arabinopyranosyl-(2c → 1d)-β-l-arabinopyranosido-4′-α-l-arabinopyranosyl-(2e → 1f)-α-l-arabinopyranosyl-(2f → 1g)-α-l-arabinopyranosyl-(2g → 1h)-α-l-arabinopyranosyl-(2h → 1i)-β-l-arabinopyranoside (2) along with known compound have been isolated from the methanol extract of fruits of Lycium chinense. Their chemical structures were established with the help of physical, chemical, and spectroscopic methods. The compounds 1 and 2 were investigated for scavenging of the diphenylpicrylhydrazyl (DPPH) radical scavenging activity, reducing power, and the phosphomolybdenum activity, and the results demonstrate that the compound (1) has potential as a natural antioxidant whereas the compound (2) exhibited moderate antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal PK (1992) NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 31:3307–3330

    Article  Google Scholar 

  • Ahmad A, Kim SH, Ali M, Park I, Kim JS, Kim ES, Lim JJ, Kim SK, Chung IM (2013) New chemical constituents from Oryza sativa straw and their algicidal activities against blue–green algae. J Agric Food Chem 61:8039–8048

    Article  CAS  PubMed  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  CAS  Google Scholar 

  • Chang LW, Yen WJ, Huang SC, Duh PD (2002) Antioxidant activity of sesame coat. Food Chem 78:347–354

    Article  CAS  Google Scholar 

  • Chung YC, Chang CT, Chao WW, Li CF, Chu ST (2002) Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J Agric Food Chem 50:2454–2458

    Article  CAS  PubMed  Google Scholar 

  • Chung IM, Ali M, Kim SH, Ahmad A (2013) New tetraterpene glycosides from the fruits of Lycium chinense. J Asian Nat Prod Res 15:136–144

    Article  CAS  PubMed  Google Scholar 

  • Chung IM, Ali M, Nagella P, Yu BR, Kim SH, Ahmad A (2014) New poyglupyranosyl and polyarabinosyl of fatty acids derivatives from the fruits of Lycium chinense and its antioxisant activity. Food Chem 151:435–443

    Article  CAS  PubMed  Google Scholar 

  • Dafini A, Yaniv Z (1994) Solanaceae as medicinal plants in Israel. J Ethnopharmacol 44:11–18

    Article  Google Scholar 

  • Davis PH (1972) Flora of Turkish and East Aegean Islands, vol 6. Univ. Press, Edinburg, p 445

    Google Scholar 

  • Dorman HJD, Hiltunen R (2004) Fe(III) reductive and free radical-scavenging properties of summer savory (Satureja hortensis L.) extract and subfractions. Food Chem 88:193–199

    Google Scholar 

  • Funayama S, Yoshida SK, Konno C, Hikino H (1980) Structure of kukoamine A, a hypotensive principle of Lycium chinense root barks. Tetrahedron Lett 21:1355–1356

    Article  CAS  Google Scholar 

  • Hara S, Okabe H, Mihashi K (1987) Gas-liquid chromatographic separation of aldose enatiomers as trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl)-thiazolidine-4(R) carboxylates. Chem Pharm Bull 35:501–506

    Article  CAS  Google Scholar 

  • Itoh T, Tamura T, Matsumoto T (1978) Four new and other 4α-methylsterols in the seeds of Solanaceae. Phytochemistry 17:971–977

    Article  CAS  Google Scholar 

  • Jung WS, Chung IM, Ali M, Ahmad A (2012) New steroidal glycoside ester and aliphatic acid from the fruits of Lycium chinense. J Asian Nat Prod Res 14:301–307

    Article  CAS  PubMed  Google Scholar 

  • Katerere DR, Eloff JN (2005) Antibacterial and antioxidant activity of Sutherlandia frutescens (Fabaceae), a reputed Anti-HIV/AIDS phytomedicine. Phytother Res 19:779–781

    Article  PubMed  Google Scholar 

  • Kim SY, Lee KH, Chang KS, Bock JY, Jung MY (1997a) Taste and flavor compounds in box thorn (Lycium chinense Miller) leaves. Food Chem 58:297–303

    Article  CAS  Google Scholar 

  • Kim SY, Choi Y, Huh H, Kim J, Kim YC, Lee HS (1997b) New Antihepatotoxic Cerebroside from Lycium chinense fruits. J Nat Prod 60:274–276

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Jung HJ, Woo ER (2005) Antimicrobial property of (+)-lyoniresinol-3-alpha-O-beta-d-glucopyranoside isolated from the root bark of Lycium chinense Miller against human pathogenic microorganisms. Arch Pharm Res 28:1031–1036

    Article  CAS  PubMed  Google Scholar 

  • Lee GH, Shin Y, Oh MJ (2008) Aroma active components of Lycii fructus (kukija). J Food Sci 73:500–505

    Article  Google Scholar 

  • Li XM, Li XL, Zhou AG (2007) Evaluation of antioxidant activity of the polysaccharides extracted from Lycium barbarum fruits in vitro. Eur Polym J 43:488–497

    Article  CAS  Google Scholar 

  • Ming M, Guanhua L, Zhanhai Y, Guang C, Xuan Z (2009) Effect of the Lycium barbarum polysaccharides administration on blood lipid metabolism and oxidative stress of mice fed high-fat diet in vivo. Food Chem 113:872–877

    Article  Google Scholar 

  • Noguchi M, Mochida K, Shingu T, Kozuka M, Fujitani K (1984) About the components of the Chinese drug “Ti-ku’pi. ‘I. Isolation and constitution of Lyciumamid, a new dipeptide. Chem Pharm Bull 32:3584–3587

    Article  CAS  PubMed  Google Scholar 

  • Oktay M, Culcin I, Kufrevioglu OI (2003) Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Food Sci Technol 36:263–271

    CAS  Google Scholar 

  • Okuda T, Kimura Y, Yoshida T, Hatano T, Okuda H, Arichi HS (1983) Studies on the activities of tannins and related compounds from medicinal plants and drugs. I. Inhibitory effects on lipid peroxidation in mitochondria and microsomes of liver. Chem Pharm Bull 31:1625–1631

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Ma C, Li Y, Leung KSY, Jiang ZH, Zhao Z (2005) Quantification of zeaxanthin dipalmitate and total carotenoids in Lycium fruits (Fructus Lycii). Plant Foods Hum Nutr 60:161–164

    Article  CAS  PubMed  Google Scholar 

  • Pharmacopoeia Commission of the PRC (2000) Pharmacopoeia of the People’s Republic of China. Chemical Industry Press, Beijing

    Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantification of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341

    Google Scholar 

  • Rivera D, Obon C (1995) The ethnopharmacology of Madeira and Porto Santo Islands, a review. J Ethnopharmacol 46:73–93

    Article  CAS  PubMed  Google Scholar 

  • Sannai A, Fujimori T, Katie K (1982) Isolation of (−)-1,2-dehydro-α-cyperone and solavetivone from Lycium chinense. Phytochemistry 21:2986–2987

    Article  CAS  Google Scholar 

  • Sannai A, Fujimori TK, Kato K (1983) Isolation of 3-hydroxy-7, 8-dehydro-β-ionone from Lycium chinense M. Agric Biol Chem 47:2397–2399

    Article  CAS  Google Scholar 

  • Tanaka M, Kuie CW, Nagashima Y, Taguchi T (1988) Application of antioxidative maillard reaction products from histidine and glucose to sardine products. Nippon Suisan Gakkaishi 54:1409–1414

    Article  CAS  Google Scholar 

  • Wang CC, Chang SC, Inbaraj BS, Chen BH (2010) Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chem 120:184–189

    Article  CAS  Google Scholar 

  • Yahara S, Shigeyama C, Ura T, Wakamatsu K, Yashuhara T, Nohara T (1993) Cyclic peptides, acyclic diterpene glycosides and other compounds from Lycium chinense Mill. Chem Pharm Bull 41:703–709

    Article  CAS  PubMed  Google Scholar 

  • Yang LL, Yen KY, Kiso Y, Kikino YH (1987) Antihepatotoxic actions of formosan plant drugs. J Ethnopharmacol 19:103–110

    Article  CAS  PubMed  Google Scholar 

  • Zargari A (1992) Medicinal plants of the world: chemical constituents, traditional and modern, vol 3, 5th edn. Tehran University Publications, Tehran, p 889

    Google Scholar 

  • Zhang Z, Liu X, Wu T, Liu J, Zhang X, Yang X, Goodheart MJ, Engelhardt JF (2011) Selective suppression of cervical cancer Hela cells by 2-O-b-d-glucopyranosyl-l-ascorbic acid isolated from the fruit of Lycium barbarum L. Cell Biol Toxicol 27:107–121

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (2011-0015691).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ateeque Ahmad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1082 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, IM., Ali, M., Nagella, P. et al. Evaluation of antioxidant activity of new constituents from the fruits of Lycium chinense . Med Chem Res 23, 3852–3860 (2014). https://doi.org/10.1007/s00044-014-0968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-0968-2

Keywords

Navigation