Skip to main content

Advertisement

Log in

Essential aminoacid incorporated GABA–phthalimide derivatives: synthesis and anticonvulsant evaluation

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of novel N-(2-(benzylamino)-1-substituted-2-oxoethyl)-4-(1,3-dioxoisoindolin-2-yl)butanamide derivatives were synthesized unifying the functionalized amino acid unit and GABA–phthalimide moiety with essential amino acid substituted on it with a view to explore prospective anticonvulsant candidates. The initial screening was performed using the intraperitoneal (i.p) maximal electroshock test and sub-cutaneous Pentylenetetrazole (scPTZ) test in mice. The neurotoxicity was determined by the minimal motor impairment based on rotarod test. The outcomes established the ability of the compounds to suppress the convulsions generated by electrical seizures. The scPTZ test provided insignificant activity profile. The leads of initial screening (4a, 4e and 4g) were subjected to the quantification studies in mice (i.p) and rats (p.o). The quantitative study in mice depicted an increase of 1.7-, 2.3- and 4-fold over phenytoin in the protective index, the keystone in the drug discovery for the anticonvulsant activity. The PI values in rat oral administration were 13.33, >145 and >100 for these compounds, respectively. The gamma-amino butyric acid level in the different brain regions also increased on administration of the active compounds with 4g providing the maximum increment. These results encourage our future investigation on the rational modification of this basic framework for better potency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  • Alagarsamy V, Saravanan G (2013) Synthesis and anticonvulsant activity of novel quinazolin-4(3H)-one derived pyrazole analogs. Med Chem Res 22:1711–1722

    Article  CAS  Google Scholar 

  • Andreichikov YS, Zalesov VV, Podushkina NA (1980) Synthesis and biological activity of amides of ω-(phthalimido)-alkyl carboxylic acid. Khim Farm Zh 14:25–30

    CAS  Google Scholar 

  • Balalaie S, Mahdidoust M, Najafabadi RE (2007) 2-(1-H-benzotriazole-1-y-l)-1,1,3,3-tetramethyluronium tetrafluoroborate as an efficient coupling reagent for the amidation and phenylhydrazation of carboxylic acids at room temperature. J Iran Chem Soc 4:364–369

    Article  CAS  Google Scholar 

  • Bardel P, Bolanos A, Kohn H (1994) Synthesis and anticonvulsant activities of α-acetamido-N-benzylacetamide derivatives containing an electron-deficient α-heteroaromatic substituent. J Med Chem 37:4567–4571

    Article  CAS  PubMed  Google Scholar 

  • Baruah PK, Dinsmore J, King AM et al (2012) Synthesis, anticonvulsant activity, and neuropathic pain-attenuating activity of N-benzyl 2-amino-2-(hetero)aromatic acetamides. Bioorg Med Chem 20:3551–3564

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick S, Pal M, Pal SP (1989) Synthesis and anticonvulsant activity of N-phthaloyl GABA-a new GABA derivative. Ind J Exp Biol 27:805–808

    CAS  Google Scholar 

  • Choi D, Stables JP, Kohn H (1996) Synthesis and anticonvulsant activities of N-benzyl-2-acetamidopropionamide derivatives. J Med Chem 39:1907–1916

    Article  CAS  PubMed  Google Scholar 

  • Clark CR, Wells MJM, Sansom RT, Norris GN, Dockens RC, Ravis WR (1984) Anticonvulsant activity of some 4-aminobenzamides. J Med Chem 27:779–782

    Article  CAS  PubMed  Google Scholar 

  • Conley JD, Kohn H (1987) Functionalized dl-amino acid derivatives: potent new agents for the treatment of epilepsy. J Med Chem 30:567–574

    Article  CAS  PubMed  Google Scholar 

  • Cortes S, Liao ZK, Watson D, Kohn H (1985) Effect of structural modification of the hydantoin ring on anticonvulsant activity. J Med Chem 28:601–606

    Article  CAS  PubMed  Google Scholar 

  • Dodgson SJ, Shank RP, Maryanoff BE (2000) Topiramate as an inhibitor of carbonic anhydrase isoenzymes. Epilepsia. 41(Suppl 1):S35–S39

    Article  CAS  PubMed  Google Scholar 

  • Dunham NW, Miya TA (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Asso Sci 46:208–209

    Article  CAS  Google Scholar 

  • Fisher RS, Boas WVE, Blume W et al (2005) Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472

    Article  PubMed  Google Scholar 

  • Habibuddin M, Pal M, Pal SP (1982) Neuropharmacology of amide derivatives of P-GABA. Ind J Exp Biol 30:578–582

    Google Scholar 

  • Isoherranen N, Woodhead JH, White HS, Bialer M (2001) Anticonvulsant profile of valrocemide (TV1901): a new antiepileptic drug. Epilepsia 42:831–836

    Article  CAS  PubMed  Google Scholar 

  • Kaushik D, Khan SA, Chawla G, Kumar S (2010) N′-[(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene] 2/4-substituted hydrazides: synthesis and anticonvulsant activity. Eur J Med Chem 45:3943–3949

    Article  CAS  PubMed  Google Scholar 

  • King AM, Ryck MD, Kaminski R, Valade A, Stables JP, Kohn H (2011) Defining the structural parameters that confer anticonvulsant activity by the site-by-site modification of (R)-N’-benzyl 2-amino-3-methylbutanamide. J Med Chem 54:6432–6442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kohn H, Conley JD (1988) New antiepileptic agents. Chem Br 24:231–234

    CAS  Google Scholar 

  • Kohn H, Conley JD, Leander JD (1988) Marked stereospecificity in a new class of anticonvulsants. Brain Res 457:371–375

    Article  CAS  PubMed  Google Scholar 

  • Kohn H, Sawhney KN, Gall PL et al (1990) Preparation and anticonvulsant activity of a series of functionalized α-aromatic and α-heteroaromatic amino acids. J Med Chem 33:919–926

    Article  CAS  PubMed  Google Scholar 

  • Kohn H, Sawhney KN, Gall PL et al (1991) Preparation and anticonvulsant activity of a series of functionalized α-heteroatom-substituted amino acids. J Med Chem 34:2444–2452

    Article  CAS  PubMed  Google Scholar 

  • Kohn H, Sawhney KN, Bardel P, Robertson DW, Leander JD (1993) Synthesis and anticonvulsant activities of α-heterocyclic α-acetamido-N-benzylacetamide derivatives. J Med Chem 36:3350–3360

    Article  CAS  PubMed  Google Scholar 

  • Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA (1978) Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 19:409–428

    Article  CAS  PubMed  Google Scholar 

  • Levy RH, Mattson R, Meldrum B (1995) Antiepileptic drugs, 4th edn. Raven Press, New York

    Google Scholar 

  • Litchfield JT, Wilcoxon FA (1949) A simplified method of evaluating dose–effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  PubMed  Google Scholar 

  • McNamara OJ (2001) Drugs effective in the therapy of the epilepsies. In: Hardman JG, Limbird LE, Gilman AG (eds) The pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York, pp 521–548

    Google Scholar 

  • Morieux P, Salome C, Park KD, Stables JP, Kohn H (2010) The structure activity relationship of the 3-Oxy site in the anticonvulsant (R)-N-benzyl-2-acetamido-3-methoxypropionamide. J Med Chem 53:5716–5726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oku A, Yamaura Y, Harada T (1986) ((9-Fluorenylmethyl)oxy)carbonyl (Fmoc) amino acid chlorides. synthesis, characterization, and application to the rapid synthesis of short peptide segments. J Org Chem 51:3732–3734

    Article  Google Scholar 

  • Pellock JM, Willmore LJ (1991) A rational guide to routine blood monitoring in patients receiving antiepileptic drugs. Neurology 41:961–964

    Article  CAS  PubMed  Google Scholar 

  • Perucca E, Yasothan U, Clincke G, Kirkpatrick P (2008) Lacosamide. Nat Rev Drug Discov 7:973–974

    Article  CAS  PubMed  Google Scholar 

  • Picot MC, Baldy-Moulinier M, Daurès JP, Dujols P, Crespel A (2008) The prevalence of epilepsy and pharmacoresistant epilepsy in adults: a population-based study in a Western European country. Epilepsia 49:1230–1238

    Article  PubMed  Google Scholar 

  • Porter RJ, Cereghino JJ, Gladding GD, Hessie BJ, Kupferberg HJ, Scoville B, White BG (1984) Antiepileptic drug development program. Cleve Clin Q 51:293–305

    Article  CAS  PubMed  Google Scholar 

  • Ragavendran JV, Sriram D, Patel SK, Reddy IV, Bharathwajan N, Stables J, Yogeeswari P (2007) Design and synthesis of anticonvulsants from a combined phthalimide–GABA–anilide and hydrazone pharmacophore. Eur J Med Chem 42:146–151

    Article  CAS  PubMed  Google Scholar 

  • Rajak H, Deshmukh R, Veerasamy R, Sharma AK, Mishra P, Kharya MD (2010) Novel semicarbazones based 2,5-disubstituted-1,3,4-oxadiazoles: one more step towards establishing four binding site pharmacophoric model hypothesis for anticonvulsant activity. Bioorg Med Chem Lett 20:4168–4172

    Article  CAS  PubMed  Google Scholar 

  • Robertis DE, Racagni G, Donom A (1987) GABA and endocrine function. Raven Press, New York

    Google Scholar 

  • Roberts E (1962) Methods in enzymology. Academic Press, New York, p 612

    Google Scholar 

  • Rogawski MA, Loscher W (2004) The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5:553–564

    Article  CAS  PubMed  Google Scholar 

  • Salach OA, Hadad S, Haj-Yehia A, Sussan S, Bialer M (1994) Comparative pharmacokinetic and pharmacodynamic analysis of phthaloyl glycine derivatives with potential antiepileptic activity. Pharm Res 11:1429–1434

    Article  PubMed  Google Scholar 

  • Salome C, Grosjean ES, Park KD, Morieux P et al (2010) Synthesis and anticonvulsant activities of (R)-N-(4′-substituted) benzyl 2-acetamido-3-methoxypropionamides. J Med Chem 53:1288–1305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shank RP, Gardocki JF, Streeter AJ, Maryanoff BE (2000) An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics, and mechanism of action. Epilepsia 41(Suppl 1):S3–S9

    Article  CAS  PubMed  Google Scholar 

  • Sivilotti L, Nistri A (1991) GABA receptor mechanisms in the central nervous system. Prog Neurobiol 36:35–92

    Article  CAS  PubMed  Google Scholar 

  • Spear BB (2001) Pharmacogenetics and antiepileptic drug. Epilepsia 42:31–34

    Article  PubMed  Google Scholar 

  • Tortella FC, Long JB (1988) Characterization of opioid peptide-like anticonvulsant activity in rat cerebrospinal fluid. Brain Res 456:139–146

    Article  CAS  PubMed  Google Scholar 

  • Toth E, Lajtha A, Sarhan S, Seiler N (1983) Anticonvulsant effects of some inhibitory neurotransmitter amino acids. Neurochem Res 8:291–302

    Article  CAS  PubMed  Google Scholar 

  • Wasowski C, Gavernet L, Barrios IA, Villalba ML et al (2012) N, N′-dicyclohexylsulfamide and N, N′-diphenethylsulfamide are anticonvulsant sulfamides with affinity for the benzodiazepine binding site of the GABAA receptor and anxiolytic activity in mice. Biochem Pharmacol 83:253–259

    Article  CAS  PubMed  Google Scholar 

  • Yogeeswari P, Ragavendran JV, Sriram D (2006) An update on GABA analogs for CNS drug discovery. Recent Pat on CNS Drug Discov 1:113–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their gratitude Jamia Hamdard, New Delhi, India for providing research facilities and Shrenik Pharma Ltd., Mumbai for providing gift sample of Pentylenetetrazole.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Siddiqui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahuja, P., Husain, A. & Siddiqui, N. Essential aminoacid incorporated GABA–phthalimide derivatives: synthesis and anticonvulsant evaluation. Med Chem Res 23, 4085–4098 (2014). https://doi.org/10.1007/s00044-014-0949-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-0949-5

Keywords

Navigation