Skip to main content
Log in

Structure-based pharmacophore modeling and virtual screening to identify novel inhibitors for anthrax lethal factor

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Inhibition of anthrax lethal factor (LF) has been reported to be a potent strategy for the treatment of anthrax; however, no effective LF inhibitors are currently available. In this study, a structure-based pharmacophore model was developed based on the co-crystallized structure of anthrax LF with the active inhibitor GM6001. The best pharmacophore model (denoted as SB_Hypo1), consisting of two hydrogen bond acceptors, one hydrogen bond donor and one hydrophobic, was further validated using Gunner-Henry score method. The well-validated SB_Hypo1 was then used as a 3D-query in virtual screening to identify potential hits from NCI database. These hits were subsequently filtered by ADMET and validated by molecular docking experiments, and their binding stabilities were validated by 10-ns MD simulations. Finally, three hits were identified as potential leads based on their favorable binding interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LF:

Lethal factor

PA:

Protective antigen

SBPM:

Structure-based pharmacophore model

SB_Hypo1:

Best structure-based pharmacophore model

MD:

Molecular dynamics

NCI:

National Cancer Institute

HBA:

Hydrogen-bond acceptor

HBD:

Hydrogen-bond donor

HY:

Hydrophobic

ADMET:

Absorption, distribution, metabolism, elimination and toxicology

EF:

Enrichment factor

GH:

Güner-Henry

PDB:

Protein Data Bank

PME:

Particle mesh Ewald

PBC:

Periodic boundary conditions

RMSD:

Root mean square deviation

References

  • Abrami L, Reig N, van der Goot FG (2005) Anthrax toxin: the long and winding road that leads to the kill. Trends Microbiol 13:72–78

    Article  CAS  PubMed  Google Scholar 

  • Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26:531–568

    Article  CAS  PubMed  Google Scholar 

  • Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797

    Article  CAS  PubMed  Google Scholar 

  • Baillie LW (2005) Bacillus anthracis, a story of nature subverted by man. Lett Appl Microbiol 41:227–229

    Article  CAS  PubMed  Google Scholar 

  • Beauregard KE, Collier RJ, Swanson JA (2000) Proteolytic activation of receptor-bound anthrax protective antigen on macrophages promotes its internalization. Cell Microbiol 2:251–258

    Article  CAS  PubMed  Google Scholar 

  • Boppana K, Dubey PK, Jagarlapudi SA, Vadivelan S, Rambabu G (2009) Knowledge based identification of MAO-B selective inhibitors using pharmacophore and structure based virtual screening models. Eur J Med Chem 44:3584–3590

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Chichester JA, Musiychuk K, de la Rosa P, Horsey A, Stevenson N, Ugulava N, Rabindran S, Palmer GA, Mett V, Yusibov V (2007) Immunogenicity of a subunit vaccine against Bacillus anthracis. Vaccine 25:3111–3114

    Article  CAS  PubMed  Google Scholar 

  • Chiu TL, Amin EA (2012) Development of a comprehensive, validated pharmacophore hypothesis for anthrax toxin lethal factor (LF) inhibitors using genetic algorithms, Pareto scoring, and structural biology. J Chem Inf Model 52:1886–1897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiu TL, Solberg J, Patil S, Geders TW, Zhang X, Rangarajan S, Francis R, Finzel BC, Walters MA, Hook DJ, Amin EA (2009) Identification of novel non-hydroxamate anthrax toxin lethal factor inhibitors by topomeric searching, docking and scoring, and in vitro screening. J Chem Inf Model 49:2726–2734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clement OO, Freeman CM, Hartmann RW, Handratta VD, Vasaitis TS, Brodie AM, Njar V (2003) Three dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy. J Med Chem 46:2345–2351

    Article  CAS  PubMed  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Dixon TC, Meselson M, Guillemin J, Hanna PC (1999) Anthrax. N Engl J Med 341:15–826

    Article  Google Scholar 

  • Duesbery NS, Vande Woude GF (1999) Anthrax toxins. Cell Mol Life Sci 55:1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Paull KD, Vande Woude GF (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280:734–737

    Article  CAS  PubMed  Google Scholar 

  • Forino M, Johnson S, Wong TY, Rozanov DV, Savinov AY, Li W, Fattorusso R, Becattini B, Orry AJ, Jung D, Abagyan RA, Smith JW, Alibek K, Liddington RC, Strongin AY, Pellecchia M (2005) Efficient synthetic inhibitors of anthrax lethal factor. Proc Natl Acad Sci USA 102:9499–9504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldman ME, Cregar L, Nguyen D, Simo O, O’Malley S, Humphreys T (2006) Cationic polyamines inhibit anthrax lethal factor protease. BMC Pharmacol 6:1–8

    Article  Google Scholar 

  • Greenidge PA, Carlsson B, Bladh LG, Gillner M (1998) Pharmacophores incorporating numerous excluded volumes defined by X-ray crystallographic structure in three-dimensional database searching: application to the thyroid hormone receptor. J Med Chem 41:2503–2512

    Article  CAS  PubMed  Google Scholar 

  • Güner OF, Henry DR (2000) Metric for analyzing hit lists and pharmacophores. In: Güner OF (ed) Pharmacophore perception, development, and use in drug design, IUL biotechnology series. International University Line, La Jolla, pp 191–212

    Google Scholar 

  • Güner OF, Waldman M, Hoffmann D, Kim JH (2000) Strategies for database mining and pharmacophore development. In: Güner OF (ed) Pharmacophore perception, development, and use in drug design, IUL biotechnology series. International University Line, La Jolla, pp 213–236

    Google Scholar 

  • He S, Wu Y, Yu D, Lai L (2011) Microsomal prostaglandin E synthase-1 exhibits one-third-of-the-sites reactivity. Biochem J 440:13–21

    Article  CAS  PubMed  Google Scholar 

  • Johnson SL, Jung D, Forino M, Chen Y, Satterthwait A, Rozanov DV, Strongin AY, Pellecchia M (2006) Anthrax lethal factor protease inhibitors: synthesis, SAR, and structure-based 3D QSAR studies. J Med Chem 49:27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson SL, Chen LH, Harbach R, Sabet M, Savinov A, Cotton NJ, Strongin A, Guiney D, Pellecchia M (2008) Rhodamine derivatives as selective protease inhibitors against bacterial toxins. Chem Biol Drug Des 71:131–139

    Article  CAS  PubMed  Google Scholar 

  • Karginov VA, Nestorovich EM, Moayeri M, Leppla SH, Bezrukov SM (2005) Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proc Natl Acad Sci USA 102:15075–15080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keim P, Smith KL (2002) Bacillus anthracis evolution and epidemiology. Curr Top Microbiol Immunol 271:21–32

    CAS  PubMed  Google Scholar 

  • Krantz BA, Melnyk RA, Zhang S, Juris SJ, Lacy DB, Wu Z, Finkelstein A, Collier RJ (2005) A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309:777–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  • Moayeri M, Haines D, Young HA, Leppla SH (2003) Bacillus anthracis lethal toxin induces TNF-alpha-independent hypoxia-mediated toxicity in mice. J Clin Invest 112:670–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Norinder U (2000) Refinement of Catalyst hypotheses using simplex optimisation. J Comput Aided Mol Des 14:545–557

    Article  CAS  PubMed  Google Scholar 

  • Palomer A, Cabre F, Pascual J, Campos J, Trujillo MA, Entrena A, Gallo MA, Garcia L, Mauleon D, Espinosa A (2002) Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models. J Med Chem 45:1402–1411

    Article  CAS  PubMed  Google Scholar 

  • Pannifer AD, Wong TY, Schwarzenbacher R, Renatus M, Petosa C, Bienkowska J, Lacy DB, Collier RJ, Park S, Leppla SH, Hanna P, Liddington RC (2001) Crystal structure of the anthrax lethal factor. Nature 414:229–233

    Article  CAS  PubMed  Google Scholar 

  • Pellizzari R, Guidi-Rontani C, Vitale G, Mock M, Montecucco C (1999) Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha. FEBS Lett 462:199–204

    Article  CAS  PubMed  Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838

    Article  CAS  PubMed  Google Scholar 

  • Roy J, Kumar UC, Machiraju PK, Muttineni RK, Kumar BVSS, Gundla R, Dayam R, Sarma JA (2010) In silico studies on anthrax lethal factor inhibitors: pharmacophore modeling and virtual screening approaches towards designing of novel inhibitors for a killer. J Mol Graph Model 29:256–2565

    Article  CAS  PubMed  Google Scholar 

  • Schepetkin IA, Khlebnikov AI, Kirpotina LN, Quinn MT (2006) Novel small-molecule inhibitors of anthrax lethal factor identified by high-throughput screening. J Med Chem 49:5232–5244

    Article  CAS  PubMed  Google Scholar 

  • Shoop WL, Xiong Y, Wiltsie J, Woods A, Guo J, Pivnichny JV, Felcetto T, Michael BF, Bansal A, Cummings RT, Cunningham BR, Friedlander AM, Douglas CM, Patel SB, Wisniewski D, Scapin G, Salowe SP, Zaller DM, Chapman KT, Scolnick EM, Schmatz DM, Bartizal K, MacCoss M, Hermes JD (2005) Anthrax lethal factor inhibition. Proc Natl Acad Sci USA 102:7958–7963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh S, Malik BK, Sharma DK (2006) Molecular drug targets and structure based drug design: a holistic approach. Bioinformation 1:314–320

    Article  PubMed Central  PubMed  Google Scholar 

  • Steindl T, Langer T (2004) Influenza virus neuraminidase inhibitors: generation and comparison of structure-based and common feature pharmacophore hypotheses and their application in virtual screening. J Chem Inf Comput Sci 44:1849–1856

    Article  CAS  PubMed  Google Scholar 

  • Thangapandian S, John S, Sakkiah S, Lee KW (2011) Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design. Eur J Med Chem 45:4409–4417

    Article  Google Scholar 

  • Tonello F, Seveso M, Marin O, Mock M, Montecucco C (2002) Screening inhibitors of anthrax lethal factor. Nature 418:386

    Article  CAS  PubMed  Google Scholar 

  • Turk BE (2008) Discovery and development of anthrax lethal factor metalloproteinase inhibitors. Curr Pharm Biotechnol 9:24–33

    Article  CAS  PubMed  Google Scholar 

  • Turk BE, Wong TY, Schwarzenbacher R, Jarrell ET, Leppla SH, Collier RJ, Liddington RC, Cantley LC (2004) The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor. Nat Struct Mol Biol 11:60–66

    Article  CAS  PubMed  Google Scholar 

  • van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204

    Article  PubMed  Google Scholar 

  • Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21:289–307

    Article  CAS  PubMed  Google Scholar 

  • Vitale G, Pellizzari R, Recchi C, Napolitani G, Mock M, Montecucco C (1998) Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem Biophys Res Commun 248:706–711

    Article  CAS  PubMed  Google Scholar 

  • Vitale G, Bernardi L, Napolitani G, Mock M, Montecucco C (2000) Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem J 352(Pt 3):739–745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wagner AB (2006) SciFinder Scholar 2006: an empirical analysis of research topic query processing. J Chem Inf Model 46:767–774

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO, Wang J, Xiao J, Zhang J, Bryant SH (2010) An overview of the PubChem BioAssay resource. Nucleic Acids Res 38:D255–D266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whittaker M, Floyd CD, Brown P, Gearing AJ (1999) Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 99:2735–2776

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Wiltsie J, Woods A, Guo J, Pivnichny JV, Tang W, Bansal A, Cummings RT, Cunningham BR, Friedlander AM, Douglas CM, Salowe SP, Zaller DM, Scolnick EM, Schmatz DM, Bartizal K, Hermes JD, MacCoss M, Chapman KT (2006) The discovery of a potent and selective lethal factor inhibitor for adjunct therapy of anthrax infection. Bioorg Med Chem Lett 16:964–968

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Science Council of Taiwan (Project number: NSC-101-2221-E-027-105-MY3), the Institute of Nuclear Energy Research of Taiwan (Project number: 1022001INER046), and National Taipei University of Technology and Taipei Medical University (Project number: NTUT-TMU-102-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsuan-Liang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, HS., Liu, HL., Chen, WH. et al. Structure-based pharmacophore modeling and virtual screening to identify novel inhibitors for anthrax lethal factor. Med Chem Res 23, 3725–3732 (2014). https://doi.org/10.1007/s00044-014-0947-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-0947-7

Keywords

Navigation