Skip to main content
Log in

Molecular modeling study on the structural basis of binding mechanism of C6-substituted phthalides with monoamine oxidases

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Several studies have revealed that phthalides are suitable scaffolds for the design of high potency monoamine oxidase (MAO) inhibitors, in which C6-substituted phthalides have been shown high binding affinities to the MAO-A and MAO-B isoenzyme without delineating the underlying mechanism. By means of molecular modeling, we proposed a structural basis of such activity, in which these compounds could successfully dock into the active pocket of human MAO isoforms with predicted affinities in comparison to phthalide. Our study indicated that the interaction of hydrogen bond was more important factor for C6-substituted phthalides binding to MAO-A, and the orientations of inhibitors and the bound residues had the major impact on the binding to MAO-B. These results, therefore, suggested that C6-substituted phthalides served as promising leads for the development of drug treatments to neurodegenerative disorders such as Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelhafez OM, Amin KM, Ali HI, Abdalla MM, Batran RZ (2012) Monoamine oxidase-A and B inhibiting effect and molecular modeling of some synthesized coumarin derivatives. Neurochem Int 62(2):198–209

    Article  PubMed  Google Scholar 

  • Binda C, Newton-Vinson P, Hubálek F, Edmondson DE, Mattevi A (2001) Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Mol Biol 9(1):22–26

    Article  Google Scholar 

  • Binda C, Mattevi A, Edmondson DE (2002) Structure-function relationships in flavoenzyme-dependent amine oxidations: a comparison of polyamine oxidase and monoamine oxidase. J Biol Chem 277(27):23973–23976

    Article  CAS  PubMed  Google Scholar 

  • Binda C, Hubálek F, Li M, Edmondson DE, Mattevi A (2004a) Crystal structure of human monoamine oxidase B, a drug target enzyme monotopically inserted into the mitochondrial outer membrane. FEBS Lett 564(3):225–228

    Article  CAS  PubMed  Google Scholar 

  • Binda C, Hubálek F, Li M, Herzig Y, Sterling J, Edmondson DE, Mattevi A (2004b) Crystal structures of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class. J Med Chem 47(7):1767–1774

    Article  CAS  PubMed  Google Scholar 

  • Bonivento D, Milczek EM, McDonald GR, Binda C, Holt A, Edmondson DE, Mattevi A (2010) Potentiation of ligand binding through cooperative effects in monoamine oxidase B. J Biol Chem 285(47):36849–36856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of the inhibitor which causes 50 % inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  • De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A (2005) Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci USA 102(36):12684–12689

    Article  PubMed Central  PubMed  Google Scholar 

  • Edmondson DE, Binda C, Mattevi A (2004) The FAD binding sites of human monoamine oxidases A and B. Neurotoxicology 25(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Fernandez HH, Chen JJ (2007) Monoamine oxidase‐B inhibition in the treatment of Parkinson’s disease. Pharmacotherapy 27(12P2):174S–185S

    Article  CAS  PubMed  Google Scholar 

  • Fowler CJ, Ross SB (1984) Selective inhibitors of monoamine oxidase A and B: biochemical, pharmacological, and clinical properties. Med Res Rev 4(3):323–358

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36(22):3219–3228

    Article  CAS  Google Scholar 

  • Hubálek F, Binda C, Khalil A, Li M, Mattevi A, Castagnoli N, Edmondson DE (2005) Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. J Biol Chem 280(16):15761–15766

    Article  PubMed  Google Scholar 

  • Lasbennes F, Sercombe R, Seylaz J (1983) Monoamine oxidase activity in brain microvessels determined using natural and artificial substrates: relevance to the blood-brain barrier. J Cereb Blood Flow Metab 3(4):521–528

    Article  CAS  PubMed  Google Scholar 

  • Manley-King CI, Bergh JJ, Petzer JP (2011a) Inhibition of monoamine oxidase by C5-substituted phthalimide analogues. Bioorg Med Chem 19(16):4829–4840. doi:10.1016/j.bmc.2011.06.070

    Article  CAS  PubMed  Google Scholar 

  • Manley-King CI, Bergh JJ, Petzer JP (2011b) Inhibition of monoamine oxidase by selected C5-and C6-substituted isatin analogues. Bioorg Med Chem 19(1):261–274

    Article  CAS  PubMed  Google Scholar 

  • Mondovì B (1985) Structure and functions of amine oxidases. CRC Press, Boca Raton

    Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Son S-Y, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T (2008) Structure of human monoamine oxidase A at 2.2-Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci USA 105(15):5739–5744. doi:10.1073/pnas.0710626105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strydom B, Bergh JJ, Petzer JP (2013) Inhibition of monoamine oxidase by phthalide analogues. Bioorg Med Chem Lett 23(5):1269–1273

    Article  CAS  PubMed  Google Scholar 

  • Van der Walt EM, Milczek EM, Malan SF, Edmondson DE, Castagnoli N Jr, Bergh JJ, Petzer JP (2009) Inhibition of monoamine oxidase by (E)-styrylisatin analogues. Bioorg Med Chem Lett 19(9):2509–2513

    Article  PubMed Central  PubMed  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134

    Article  CAS  PubMed  Google Scholar 

  • Westlund K, Denney R, Kochersperger L, Rose R, Abell C (1985) Distinct monoamine oxidase A and B populations in primate brain. Science 230(4722):181–183

    Article  CAS  PubMed  Google Scholar 

  • Westlund K, Denney R, Rose R, Abell C (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25(2):439–456

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Yasuhara H (2004) Clinical pharmacology of MAO inhibitors: safety and future. Neurotoxicology 25(1):215–221

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB, Bakhle Y (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147(S1):S287–S296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7(4):295–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Arthur J. Olson for his kindness in offering us the AUTODOCK 4.2 program. We also gratefully acknowledge financial support from the National Natural Science Foundation of China (NSFC, No. 21275067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lin Zhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P.Z., Tian, Y.L., Zhai, H.L. et al. Molecular modeling study on the structural basis of binding mechanism of C6-substituted phthalides with monoamine oxidases. Med Chem Res 23, 3624–3631 (2014). https://doi.org/10.1007/s00044-014-0941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-0941-0

Keywords

Navigation