Skip to main content

Advertisement

Log in

Synthesis, characterization, biological activity, and 3D-QSAR studies on some novel class of pyrrole derivatives as antitubercular agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A new series of pyrrole derivatives have been designed, synthesized, and their structures have been elucidated along with the evaluation of antitubercular activity against Mycobacterium tuberculosis H37Rv using the microplate alamar blue assay method and antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, and Escherichia coli by broth micro-dilution assay method. Structural activity relationships and 3D-QSAR analysis have been carried out by Topomer Comparative Molecular Field Analysis (CoMFA). Training set of 42 and test set of 8 active compounds were used to develop the method that showed cross-validated correlation coefficient (q 2) of 0.815, standard error of prediction of 0.36, non-cross-validated correlation coefficient (r 2) of 0.973, and standard error of estimate of 0.14 with six components.

Graphical Abstract

Synthesis; spectral and 3D-QSAR studies; and antibacterial, antitubercular, and cytotoxic activities of a novel series of pyrrole derivatives are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Aziz AA (2007) Novel and versatile methodology for synthesis of cyclic imides and evaluation of their cytotoxic, DNA binding, apoptotic inducing activities and molecular modeling study. Eur J Med Chem 42:614–626

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi A, Solati J, Hajikhani R, Pakzad S (2011) Synthesis and analgesic effects of new pyrrole derivatives of phencyclidine in mice. Arzneimittelforschung 61:296–300

    Article  CAS  PubMed  Google Scholar 

  • Biava M, Porretta GC, Poce G, Battilocchio C, Alfonso S, De Logu A, Serra N, Manetti F, Botta M (2010) Identification of a novel pyrrole derivative endowed with antimycobacterial activity and protection index comparable to that of the current antitubercular drugs streptomycin and rifampin. Bioorg Med Chem 18:8076–8084

    Article  CAS  PubMed  Google Scholar 

  • Borchhardt DM, Andricopulo AD (2009) CoMFA and CoMSIA 3D QSAR models for a series of cyclic imides with analgesic activity. Med Chem 5:66–73

    Article  CAS  PubMed  Google Scholar 

  • Bush BL, Nachbar RB Jr (1993) Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. J Comput-Aided Mol Des 7:587–619

    Article  CAS  PubMed  Google Scholar 

  • Cramer RD (1993) Partial Least Squares (PLS): its strengths and limitations. Perspect Drug Discov Des 1(2):269–278

    Article  CAS  Google Scholar 

  • Cramer RD (2003) Topomer CoMFA: a design methodology for rapid lead optimization. J Med Chem 46(3):374–388

    Article  CAS  PubMed  Google Scholar 

  • Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  • Cramer RD, Clark RD, Patterson DE, Ferguson AM (1996) Bioisosterism as a molecular diversity descriptor: steric fields of single “topomeric” confermres. J Med Chem 39(16):3060–3069

    Article  CAS  PubMed  Google Scholar 

  • Dickey JB, Towne EB, Bloom MS, Moore WH, Hill HM, Heynemann H, Hedberg DG, Sievers DC, Otis MV (1959) Azo dyes from substituted 2-aminothiazoles. J Org Chem 24(2):187–196

    Article  CAS  Google Scholar 

  • Duncan K, Barry CE (2004) Prospects for new antitubercular drugs. Curr Opin Microbiol 7:460–465

    Article  CAS  PubMed  Google Scholar 

  • Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH (1998) Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol 36:362–366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gorczynski MJ, Leal RM, Mooberry SL, Bushweller JH, Brown ML (2004) Synthesis and evaluation of substituted 4-aryloxy- and 4-arylsulfanyl-phenyl-2-aminothiazoles as inhibitors of human breast cancer cell proliferation. Bioorg Med Chem 12:1029–1036

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Jo K, Kawakita T, Mitsuhashi S, Nishino T, Ohsawa N, Tanami H (1981) Determination method of minimum inhibitory concentrations. Chemotherapy 29:76–79

    Google Scholar 

  • Gundersen LL, Nissen-Meyer J, Spilsberg B (2002) Synthesis and antimycobacterial activity of 6-arylpurines: the requirements for the N-9 substituent in active antimycobacterial purines. J Med Chem 45:1383–1386

    Article  CAS  PubMed  Google Scholar 

  • Jones RA (1992) Pyrroles, Vinyl Pyrroles, Part II, the chemistry of heterocyclic compounds, vol 48. Wiley, New York, pp 131–298

    Google Scholar 

  • Jones RA, Bean GP (1997) The chemistry of pyrroles. Academic Press, London, pp 51–57

    Google Scholar 

  • Joshi SD, Vagdevi HM, Vaidya VP, Gadaginamath GS (2008) Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems, a novel class of potential antibacterial and antitubercular agents. Eur J Med Chem 43:1989–1996

    Article  CAS  PubMed  Google Scholar 

  • Joshi SD, Joshi A, Vagdevi HM, Vaidya VP, Gadaginamath GS (2010) Microwave assisted synthesis of some new quinolinylpyrrole derivatives as potential antibacterial and antitubercular agents. Indian J Heterocycl Chem 19:221–224

    CAS  Google Scholar 

  • Joshi SD, More Y, Vagdevi HM, Vaidya VP, Gadaginamath GS, Kulkarni VH (2013a) Synthesis of new 4-(2,5-dimethylpyrrol-1-yl)/4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems a novel class of potential antibacterial, antifungal and antitubercular agents. Med Chem Res 22:1073–1089

    Article  CAS  Google Scholar 

  • Joshi SD, Manish K, Badiger A (2013b) Synthesis and evaluation of antibacterial and antitubercular activities of some novel imidazo[2,1-b][1,3,4]thiadiazole derivatives. Med Chem Res 22:869–878

    Article  CAS  Google Scholar 

  • Kamal A, Ramakrishna G, Lakshma Nayak V, Raju P, Subba Rao AV, Viswanath A, Vishnuvardhan MV, Ramakrishna S, Srinivas G (2012) Design and synthesis of benzo[c,d]indolone-pyrrolobenzodiazepine conjugates as potential anticancer agents. Bioorg Med Chem 20:789–800

    Article  CAS  PubMed  Google Scholar 

  • Mohamed MS, Kamel R, Fathallah SS (2011) Synthesis of new pyrroles of potential anti-inflammatory activity. Arch Pharm (Weinheim) 12:830–839

    Article  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Pattan SR, Ali MS, Pattan JS, Purohit SS, Reddy VVK, Nataraj BR (2006) Synthesis and microbiological evaluation of 2-acetanilido-4-arylthiazole derivatives. Indian J Chem 45(B):1929–1932

    Google Scholar 

  • Sbardella G, Mai A, Artico M, Loddo R, Setzuc MG, La Colla P (2004) Synthesis and in vitro antimycobacterial activity of novel 3-(1H-pyrrol-1-yl)-2-oxazolidinone analogues of PNU-100480. Bioorg Med Chem Lett 14:1537–1541

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Srivastava M, Gyananchandran AK, Gokulan PD (2010) Synthesis and biological evaluation of some new phenylthiazole derivatives for their antimicrobial activities. J Curr Pharm Res 4:16–19

    Google Scholar 

  • Tripos International (2012) Sybyl-X 2.0. Tripos International, St. Louis

    Google Scholar 

  • Valadas E, Antunes F (2005) Tuberculosis, a re-emergent disease. Eur J Radiol 55:154–157

    Article  PubMed  Google Scholar 

  • Vicini P, Geronikaki A, Incerti M, Busonera B, Poni G, Cabras CA, La Colla P (2003) Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg Med Chem 11:4785–4789

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2008) Global tuberculosis control: surveillance, planning, and financing, WHO Report. WHO Press, Geneva

    Google Scholar 

Download references

Acknowledgments

Authors immensely thank the Indian Council of Medical Research, New Delhi, India for financial support [File No. 64/4/2011-BMS, IRIS Cell No. 2010-08710]. We also thank Dr. V. H. Kulkarni, Principal and Mr. H. V. Dambal, President, S.E.T.’s College of Pharmacy, Dharwad, India, for providing facilities. We thank Dr. K. G. Bhat, Maratha Mandal’s Dental College, Hospital and Research Centre, Belgaum, India for providing facilities for antibacterial, antitubercular, and cytotoxic activities; Director, SAIF, Indian Institute of Technology, Chennai, Tamil Nadu, India and the Director, SAIF, Panjab University, Chandigarh, Panjab, India for providing the NMR and mass spectral data. We thank Mr. Shrikant A. Tiwari for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrinivas D. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, S.D., More, U.A., Dixit, S.R. et al. Synthesis, characterization, biological activity, and 3D-QSAR studies on some novel class of pyrrole derivatives as antitubercular agents. Med Chem Res 23, 1123–1147 (2014). https://doi.org/10.1007/s00044-013-0709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0709-y

Keywords

Navigation