Medicinal Chemistry Research

, Volume 23, Issue 2, pp 896–904 | Cite as

Greener synthesis and photo-antiproliferative activity of novel fluorinated benzothiazolo[2, 3-b]quinazolines

  • Kapil AryaEmail author
  • Ravi Tomar
  • Diwan Singh Rawat
Original Research


1-Butyl-3-methylimidazolium and inorganic anions such as BF4 , PF6 and PTSA are used as green catalyst and reaction medium for synthesis of fluorinated benzothiazolo[2,3-b]quinazoline-2H-ones analogues via one-pot reaction of 2-amino-6-chlorobenzothiazole (1), fluorinated aldehydes (2) dimedone and (3) using microwave irradiation. The whole procedure is simple and straightforward, and no aqueous work-up is needed. Synthesized compounds are screened for photo-antiproliferative activity against human keratinocytes cell line and carcinoma cell lines like promyelocytic leukemia (HL-60) cells and adenocarcinoma (LoVo) cells. Structure activity relationship studies revealed that the substitution on aryl ring played a dominant role and was responsible for the antiproliferative activity.


Ionic liquid Fluorinated benzothiazolo[2,3-b]quinazolines Microwaves Antiproliferative activity 



KA acknowledge the D.S.T. (SR/FT/CS-69/2013), New Delhi, India and University of Delhi, Delhi, India for financial support.


  1. Arya K, Dandia A, Khaturia S, Jain AK (2010) Microwave induced preparation of biologically important benzothiazolo [2,3-b] quinazolines, and comparison with ultrasonic and classical heating. Monatsh Chem 141:979–985CrossRefGoogle Scholar
  2. Arya K, Rajesh UC, Rawat DS (2012) Proline confined FAU zeolite: heterogeneous hybrid catalyst for the synthesis of spiroheterocycles via a Mannich type reaction. Green Chem 14:3344CrossRefGoogle Scholar
  3. Arya K, Sachdeva H, Dwivedi D, Khaturia S, Saroj R (2013) Synthesis, anti-inflammatory activity, and QSAR study of some Schiff bases derived from 5-mercapto-3-(4′-pyridyl)-4H-1,2,4-triazol-4-yl-thiosemicarbazide. Med Chem Res. doi: 10.1007/s00044-013-0507-6
  4. Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927CrossRefPubMedGoogle Scholar
  5. Bhargava PN, Baliga BT (1958) Studies on 2-aminobenzothiazoles. J Indian Chem Soc 35:807–810Google Scholar
  6. Bradshaw TD, Shi DF, Schultz RJ, Paull KD, Wilson A, Garner C, Fiebig HH, Wrigley S, Stevens MFG (1998) Influence of 2-(4-aminophenyl)benzothiazoles on growth of human ovarian carcinoma cells in vitro and in vivo. Br J Cancer 78:421–429PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bradshaw TD, Chua MS, Browne HL, Trapani V, Suasville EA, Stevens MFG (2002) In vitro evaluation of amino acid prodrugs of novel antitumour 2-(4-amino-3-methylphenyl)benzothiazoles. Br J Cancer 86:1348–1352PubMedCentralCrossRefPubMedGoogle Scholar
  8. Burrows CJ, Muller JG (1998) Oxidative nucleobase modifications leading to strand scission. Chem Rev 98:1109–1152CrossRefPubMedGoogle Scholar
  9. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89CrossRefPubMedGoogle Scholar
  10. Elisei F, Aloisi G, Latterini L, Mazzuccato U, Viola G, Miolo G, Vedaldi D, Dall’Acqua F (2002) Excited-state properties and in vitro phototoxicity studies of three phenothiazine derivatives. Photochem Photobiol 75:11–21CrossRefPubMedGoogle Scholar
  11. El-Sherbeny MA (2000) Synthesis of certain pyrimido[2,1-b]benzothiazole and benzothiazolo[2,3-b]quinazoline derivatives for in vitro antitumor and antiviral activities. Arzeneim Forsch 50:848–853Google Scholar
  12. Filler R (1974) Fluorinated compounds of medicinal interest. Chem Tech 4:752–756Google Scholar
  13. Grdisa CM, Mrvos-Sermek D, Cetina M, Tralić-Kulenović VK, Pavelić G, Karminski-Zamola G (2004) Synthesis, crystal structure and antiproliferative evaluation of some new substituted benzothiazoles and styrylbenzothiazoles. Farmaco 59:297–305CrossRefPubMedGoogle Scholar
  14. Hanoun JP, Faure R, Galy JP (1996) Azido/tetrazole equilibrium in the thiazoloacridinone series. J Heterocycl Chem 33:747–750CrossRefGoogle Scholar
  15. Kashiyama E, Hutchinson I, Chua MS, Stinson SF, Phillips LR, Kaur G, Sausville EA, Bradshaw TD, Westwell AD, Stevens MF (1999) Antitumor benzothiazoles. 8. Synthesis, metabolic formation, and biological properties of the C- and N-oxidation products of antitumor 2-(4-aminophenyl)benzothiazoles. J Med Chem 42(20):4172–4184CrossRefPubMedGoogle Scholar
  16. Kumar M, Sharma K, Sharma DK (2012) Diversity oriented one-pot three-component sequential synthesis of annulated benzothiazoloquinazolines. Org Med Chem Lett 2:10PubMedCentralCrossRefPubMedGoogle Scholar
  17. Laurent EK, Gizolme M, Grimaud L, Oble J (2006) Direct access to heterocyclic scaffolds by new multicomponent Ugi-smiles couplings. Org Lett 8:4019–4021CrossRefGoogle Scholar
  18. Leong CO, Suggitt M, Swaine DJ, Bibby MC, Stevens MFG, Bradshaw TD (2004) In vitro, in vivo, and in silico analyses of the antitumor activity of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazoles. Mol Cancer Ther 3:1565–1575PubMedGoogle Scholar
  19. Li Q, Xu W (2005) Novel anticancer targets and drug discovery in post genomic age. Curr Med Chem Anticancer Agents 5(1):53–63CrossRefPubMedGoogle Scholar
  20. Liu F, Abrams MB, Baker RT, Tumas W (2001) Phase-separable catalysis using room temperature ionic liquids and supercritical carbon dioxide. Chem Commun 5:433–434CrossRefGoogle Scholar
  21. Molinski TF (1993) Marine pyridoacridine alkaloid: structure, synthesis and biological chemistry. Chem Rev 93:1825–1838CrossRefGoogle Scholar
  22. Nagarapu L, Gaikwad HK, Palem JD, Venkatesh R, Bantu R, Sridhar B (2013) Convenient approach for the one-pot, three-component synthesis of triheterocyclic 4H-pyrimido[2,1-b]benzothiazole derivatives using TBAHS. Synth Commun 43:93–104CrossRefGoogle Scholar
  23. Ngouansavanh T, Zhu J (2007) IBX-mediated oxidative ugi-type multicomponent reactions: application to the N and C1 functionalization of tetrahydroisoquinoline. Angew Chem Int Ed 46:5775–5778CrossRefGoogle Scholar
  24. Norden B, Kurucsev T (1994) Analysing DNA complexes by circular and linear dichroism. J Mol Recognit 7:141–156CrossRefPubMedGoogle Scholar
  25. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRefPubMedGoogle Scholar
  26. Quiroga J, Hernandez P, Insuasty B, Abonia R, Cobo J, Sanchez A, Nogueras M, Low JN (2002) Control of the reaction between 2-aminobenzothiazoles and Mannich bases: synthesis of pyrido[2,1-b][1,3]benzothiazoles versus [1,3]benzothiazolo[2,3-b]quinazolines. J Chem Soc Perkin Trans 1(4):555–559CrossRefGoogle Scholar
  27. Sahu PK, Jain R, Yadav R, Agarwal DD (2012) Hydrotalcite: recyclable, novel heterogeneous catalyst for facile, environmentally benign and high yielding multi-component synthesis and mechanistic study under solvent free conditions. Catal Sci Technol 2:2465–2475CrossRefGoogle Scholar
  28. Shaabani A, Rahmati A, Naderi S (2005) A novel one-pot three-component reaction: synthesis of triheterocyclic 4H-pyrimido[2,1-b]benzazoles ring systems. Bioorg Med Chem Lett 15:5553–5557CrossRefPubMedGoogle Scholar
  29. Shi DF, Bradshaw TD, Wrigley S, McCall CJ, Lelieveld P, Fichtner I, Stevens MFG (1996) Antitumor benzothiazoles. 3. Synthesis of 2-(4-aminophenyl)benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J Med Chem 39:3375–3384CrossRefPubMedGoogle Scholar
  30. Testard A, Loge C, Leger B, Robert JM, Lozach O, Blairvacq M, Meijer L, Thiery V, Besson T (2006) Thiazolo[5,4-f]quinazolin-9-ones, inhibitors of glycogen synthase kinase-3. Bioorg Med Chem Lett 16:3419–3423CrossRefPubMedGoogle Scholar
  31. Tu S, Shao Q, Zhou D, Cao L, Shi F, Li C (2007) Microwave-assisted efficient synthesis of benzo[4,5]imidazo[1,2-a]-pyrimidine derivatives in water under catalyst-free conditions. J Heterocycl Chem 44:1401–1406CrossRefGoogle Scholar
  32. Viola G, Latterini L, Gabellini N, Vedaldi D, Dall’ Acqua F, Elisei F, Aloisi GG, Barbafina A (2003) Photosensitization of DNA strand breaks by three phenothiazine derivatives. Chem Res Toxicol 16:644–651CrossRefPubMedGoogle Scholar
  33. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. Wiley, WeinheimGoogle Scholar
  34. Yang YI, Kou Y (2004) Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chem Commun 2:226–227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations