Skip to main content
Log in

Molecular dynamics-based self-organizing molecular field analysis on 3-amino-6-arylpyrazines as the ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase is one of the apical regulators in the DNA damaging response signaling pathways. Inhibition of ATR kinase may greatly potentiates the cyto-toxicity by DNA damaging agents to the tumor cells while, have minimum effect on normal cells. In this article, the impact of ligand conformation on the three-dimensional quantitative structure–activity relationship (3D-QSAR) model of a series of 3-amino-6-arylpyrazines as ATR kinase inhibitors was investigated. We employed molecular dynamics (MDs) simulations to get the dynamic active conformations (DACs) of the compounds in the ATP-binding site of ATR kinase. As a result, the model based on the DACs extracted from the first nanosecond MD simulation is superior to that using static active conformations from docking with r 2 = 0.917; \(q_{\text{LOO}}^{2}\) = 0.880; standard error of estimate [SEE] = 0.259; F = 347.29; \(r_{\text{pred}}^{2}\) = 0.923; SEEpred = 0.301. Our results highlight the importance of incorporating DACs of ligand using MD simulation in 3D-QSAR studies. This study may also provide useful information to rationalize the design of novel ATR kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AbdulHameed MD, Hamza A, Liu JJ, Zhan CG (2008) Combined 3D-QSAR modeling and molecular docking study on indolinone derivatives as inhibitors of 3-phosphoinositide-dependent protein kinase-1. J Chem Inf Model 48:1760–1772

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Thareja S, Bhardwaj TR, Kumar M (2010a) Self-organizing molecular field analysis on pregnane derivatives as human steroidal 5alpha-reductase inhibitors. Steroids 75:411–418

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Thareja S, Bhardwaj T, Kumar M (2010b) 3D-QSAR studies on unsaturated 4-azasteroids as human 5α-reductase inhibitors: a self organizing molecular field analysis approach. Eur J Med Chem 45:476–481

    Article  CAS  PubMed  Google Scholar 

  • Bolt J, Vo QN, Kim WJ, McWhorter AJ, Thomson J, Hagensee ME, Friedlander P, Brown KD, Gilbert J (2005) The ATM/p53 pathway is commonly targeted for inactivation in squamous cell carcinoma of the head and neck (SCCHN) by multiple molecular mechanisms. Oral Oncol 41:1013–1020

    Article  CAS  PubMed  Google Scholar 

  • Borst P, Rottenberg S, Jonkers J (2008) How do real tumors become resistant to cisplatin? Cell Cycle 7:1353–1359

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz-Terrachet S, Terrachet R, Taïri-Kellou S (2013) Receptor and ligand-based 3D-QSAR study on a series of nonsteroidal anti-inflammatory drugs. Med Chem Res 22:1529–1537

    Article  CAS  Google Scholar 

  • Charrier J-D, Durrant SJ, Golec JMC, Kay DP, Knegtel RMA, MacCormick S, Mortimore M, O’Donnell ME, Pinder JL, Reaper PM, Rutherford AP, Wang PSH, Young SC, Pollard JR (2011) Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents. J Med Chem 54:2320–2330

    Article  CAS  PubMed  Google Scholar 

  • Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Cell Biol 9:616–627

    Article  CAS  Google Scholar 

  • Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Getz G, Wheeler DA et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Discovery Studio, version 2.5, Accelrys Inc., San Diego, CA (2011)

  • Einhorn LH (2002) Curing metastatic testicular cancer. Proc Natl Acad Sci USA 99:4592–4595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frish MJ, Trucks GW, Schlegel HB et al (2004) GAUSSIAN 03, Revision D. 02. Gaussian, Inc., Wallingford

    Google Scholar 

  • Galeazzi R (2009) Molecular dynamics as a tool in rational drug design: current status and some major applications. Curr Comput Aided Drug Des 5:225–240

    Article  CAS  Google Scholar 

  • Greenman C, Stephens P, Smith R et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hou TJ, Wang JM, Li YY, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Iribarne F, Paulino M, Aguilera S, Tapia O (2009) Assaying phenothiazine derivatives as trypanothione reductase and glutathione reductase inhibitors by theoretical docking and molecular dynamics studies. J Mol Graph Model 28:371–381

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H, Bartek J, Yaffe MB, Hemann MT (2009) The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 23:1895–1909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Kumar M (2013) 3D-QSAR CoMFA and CoMSIA studies for design of potent human steroid 5α-reductase inhibitors. Med Chem Res 22:105–114

    Article  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Li MY, Du LP, Wu B, Xia L (2003) Self-organizing molecular field analysis on alpha (1a)-adrenoceptor dihydropyridine antagonists. Bioorg Med Chem 11:3945–3951

    Article  CAS  PubMed  Google Scholar 

  • Li SL, He MY, Du HG (2011a) 3D-QSAR studies on a series of dihydroorotate dehydrogenase inhibitors: analogues of the active metabolite of leflunomide. Int J Mol Sci 12:2982–2993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Z, Zhou M, Wu F, Li R, Ding ZY (2011b) Self-organizing molecular field analysis on human β-secretase nonpeptide inhibitors: 5,5-disubstituted aminohydantoins. Eur J Med Chem 46:58–64

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Contreras AJ, Fernandez-Capetillo O (2010) The ATR barrier to replication-born DNA damage. DNA Repair 9:1249–1255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishida H, Tatewaki N, Nakajima Y, Magara T, Ko KM, Hamamori Y, Konishi T (2009) Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response. Nucleic Acids Res 37:5678–5689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring r 2m metrics for validation of QSPR models. Chemom Intell Lab 107:194–205

    Article  CAS  Google Scholar 

  • Olaussen KA, Dunant A, Fouret P, Brambilla E, André F, Haddad V, Taranchon E, Filipits M, Pirker R, Popper HH, Stahel R, Sabatier L, Pignon J-P, Tursz T, Le Chevalier T, Soria J-C (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355:983–991

    Article  CAS  PubMed  Google Scholar 

  • Oliver TG, Mercer KL, Sayles LC, Burke JR, Mendus D, Lovejoy KS, Cheng M-H, Subramanian A, Mu D, Powers S, Crowley D, Bronson RT, Whittaker CA, Bhutkar A, Lippard SJ et al (2010) Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer. Genes Dev 24:837–852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peasland A, Wang LZ, Rowling E, Kyle S, Chen T, Hopkins A, Cliby WA, Sarkaria J, Beale G, Edmondson RJ, Curtin NJ (2011) Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br J Cancer 105:372–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reaper PM, Griffiths MR, Long JM, Charrier JD, MacCormick S, Charlton PA, Golec JMC, Pollard JR (2011) Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7:428–430

    Article  CAS  PubMed  Google Scholar 

  • Robinson DD, Winn PJ, Lyne PD, Richards WG (1999) Self-organizing molecular field analysis: a tool for structure–activity studies. J Med Chem 42:573–583

    Article  CAS  PubMed  Google Scholar 

  • Roy PP, Paul S, Mitra I, Roy K (2009) On two novel parameters for validation of predictive QSAR models. Molecules 14:1660–1701

    Article  CAS  PubMed  Google Scholar 

  • Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H (2012) Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model 52:396–408

    Article  CAS  PubMed  Google Scholar 

  • Sangster-Guity N, Conrad BH, Papadopoulos N, Bunz F (2011) ATR mediates cisplatin resistance in a p53 genotype-specific manner. Oncogene 30:2526–2533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59:4375–4382

    CAS  PubMed  Google Scholar 

  • Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sibanda BL, Chirgadze DY, Blundell TL (2010) Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature 463:118–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sinha V, Thareja S, Kumar M (2012) Self-organizing molecular field analysis of NSAIDs: assessment of pharmacokinetic and physicochemical properties using 3D-QSPkR approach. Eur J Med Chem 53:76–82

    Article  PubMed  Google Scholar 

  • Stewart Computational Chemistry (2008) Colorado Springs. http://OpenMOPAC.net. Accessed 1 July 2010

  • Thareja S, Aggarwal S, Bhardwaj TR, Kumar M (2009) Self organizing molecular field analysis on a series of human 5 alpha-reductase inhibitors: unsaturated 3-carboxysteroid. Eur J Med Chem 44:4920–4925

    Article  CAS  PubMed  Google Scholar 

  • Thareja S, Aggarwal S, Bhardwaj T, Kumar M (2010) Self-organizing molecular field analysis of 2,4-thiazolidinediones: a 3D-QSAR model for the development of human PTP1B inhibitors. Eur J Med Chem 45:2537–2546

    Article  CAS  PubMed  Google Scholar 

  • The Cambridge Crystallographic Data Centre, Cambridge (2010)

  • Toledo LI, Murga M, Zur R, Soria R, Rodriguez A, Martinez S, Oyarzabal J, Pastor J, Bischoff JR, Fernandez-Capetillo O (2011) A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol 18:721–727

    Article  CAS  PubMed  Google Scholar 

  • Viktor H, Robert A, Asim O, Bentley S, Adrian R, Carlos S (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  Google Scholar 

  • Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6:909–919

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Romain MW, James WC, Peter AK, David AC (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang W, Kollman P, Case D (2005) Antechamber, an accessory software package for molecular mechanical calculations. J Comput Chem 25:1157–1174

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the National Science Foundation of China (30901743), the National Key Program of China (2012ZX09103101-022), the State Key Laboratory of Drug Research, and Doctoral Fund of Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Li.

Additional information

Hao Luo and Jianyou Shi have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5526 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, H., Shi, J., Lu, L. et al. Molecular dynamics-based self-organizing molecular field analysis on 3-amino-6-arylpyrazines as the ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibitors. Med Chem Res 23, 747–758 (2014). https://doi.org/10.1007/s00044-013-0665-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0665-6

Keywords

Navigation