Skip to main content

Design, synthesis and evaluation of aminobenzophenone derivatives containing nitrogen mustard moiety as potential central nervous system antitumor agent

Abstract

A series of novel substituted aminobenzophenone derivatives containing nitrogen mustard moiety (5af) were synthesized and characterized on the basis of their IR, 1H NMR, 13C NMR, CHN, and mass spectral data. All the compounds when evaluated for chemical 4-(4-nitrobenzyl) pyridine alkylating activity proved to be active alkylating agents. All the synthesized compounds were subjected to physicochemical parameters determination required for central nervous system (CNS) activity through computational, online software, and QikProp 3.2. The log P values and other in silico ADME physicochemical descriptors analyzed lay between the ranges those are required for good BBB penetration. The in vitro antiproliferative activity against human cancer cell lines viz. A 549 (lung), COLO 205 (colon), U 87 (glioblastoma), and IMR-32 (neuroblastoma) was investigated. Most of the test compounds showed potent antitumor activity, especially compound (5f) which displayed the highest activity against CNS cancer cell line comparable to that of chlorambucil and docetaxel. The preliminary structure–activity relationship (SAR) revealed that 5-chloroaminobenzophenone-mustard series (5a–c) exhibited better antitumor activity than 5-nitroaminobenzophenone-mustard series (5d–f).

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2

References

  1. Balazs MK, Anderson A, Iwamoto RH, Lim P (1970) Synthesis of 4-{p-((2-chloroethyl)(2-hydroxyethyl)amino)phenyl}butyric acid and its behaviours in the 4-(4-nitrobenzyl)pyridine assay procedure. J Pharm Sci 59:563–565

    CAS  Article  PubMed  Google Scholar 

  2. Bartzatt RL (2004) Synthesis and alkylating activity of a nitrogen mustard agent to penetrate the blood-brain barrier. Drug Deliv 11:19–26

    CAS  Article  PubMed  Google Scholar 

  3. Bodor N, Venkatraghavan V, Windwood D, Estes K, Brewster E (1989) Improved delivery through biological membranes. XLI. Brain-enhanced delivery of chlorambucil. Int J Pharm 53:195–208

    CAS  Article  Google Scholar 

  4. ChemSilico LLC, Tewksbury, MA, Available from: www.chemsilico.com/cs_products/products.html

  5. Clark D (1999) Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood brain barrier penetration. J Pharm Sci 8:815–821

    Article  Google Scholar 

  6. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncol 14(5):1–49

    Article  Google Scholar 

  7. El-Sherbeny MA, Al-Salem HS, Sultan MA, Radwan MA, Farag HA, Ei-Subbagh HI (2003) Synthesis in vitro & in vivo evaluation of a delivery system for targeting anticancer drug to brain. Arch Pharm 336(10):445–455

    CAS  Article  Google Scholar 

  8. Fousteris MA, Koutsourea AI, Arsenou ES, Papageorgiou A, Mourelatos D, Nikolaropoulos SS (2007) Structure-antileukemic activity relationship study of B- and D-ring modified and nonmodified steroidal esters of 4-methyl-3-N, N-bis(2-chloroethyl)amino benzoic acid: a comparative study. Anticancer Drugs 10:997–1004

    Article  Google Scholar 

  9. Francisco AP, Perry MJ, Moreira R, Mendes E (2008) Alkylating agents, Chap 9. In: Misssailidis S (ed) Anticancer therapeutics. Wiley, Weinheim, pp 133–158

    Chapter  Google Scholar 

  10. Friedman OM, Seligman AM (1954) Preparation of N-phosphorylated derivatives of bis-(2-chloroethylamine. J Am Chem Soc 76:655–658

    CAS  Article  Google Scholar 

  11. Genka S, Deutsch J, Shetty UH, Stahle PL, John V, Lieberburg IM, Ali-Osman F, Rapoport SI, Greig NH (1993) Development of lipophilic anticancer agents for the treatment of brain tumors by the esterification of water-soluble chlorambucil. Clin Exp Metastatis 11:131–140

    CAS  Article  Google Scholar 

  12. Gomez-Bombrelli R, Gonzalez-Perez M, Calle E, Casado J (2012) Potential of the NBP method for the study of alkylation mechanism: NBP as a DNA-model. Chem Res Toxicol 25:1175–1191

    Google Scholar 

  13. Hirai K, Ishiba T, Sugimoto H, Sasakura K, Fujishita T, Toyoda T, Tsukinoki Y, Joyama H, Hatakeyama H, Hirose K (1980) Peptidoaminobenzophenones a novel class of ring opened derivatives of 1,4-benzodiazepines. J Med Chem 23(7):764–773

    CAS  Article  PubMed  Google Scholar 

  14. Hirai K, Ishiba T, Sugimoto H, Fujishita T, Tsukinoki Y, Hirose K (1981) Novel peptidoaminobenzophenones, terminal N-substituted peptidoaminobenzophenones and N-(acylglycyl)aminobenzophenones as open-ring derivatives of benzodiazepines. J Med Chem 24:20–27

    CAS  Article  PubMed  Google Scholar 

  15. Hirata T, Driscoll JS (1976) Potential CNS antitumor agents-phenothiazines I: nitrogen mustard derivatives. J Med Chem 65:1699–1701

    CAS  Google Scholar 

  16. Jorgensen WL (2009) Efficient drug lead discovery and optimization. Acc Chem Res 42(6):724–733

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Kapuriya N, Kakadiya R, Dong H, Kumar A, Lee P-C, Zhang X, Chou T-C, Lee T-C, Chen C-H, Lam K, Marvania B, Shah EA, Su T-L (2011) Design, synthesis, and biological evaluation of novel water-soluble N-mustards as potential anticancer agents. Bioorg Med Chem 19:471–485

    CAS  Article  PubMed  Google Scholar 

  18. Kelder J, Grootenhuis P, Bayada D, Delbressine L, Ploemen J (1999) Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 10(16):1514–1519

    Article  Google Scholar 

  19. Leeson PD, Davis AM (2004) Time-related differences in the physical property profiles of oral drugs. J Med Chem 47:6338–6348

    CAS  Article  PubMed  Google Scholar 

  20. Liou J-P, Chang C-W, Song J-S, Yang Y-N, Yeh C-F, Tseng H-Y, Lo Y-K, Chang Y-L, Chang C-M, Hsieh H-P (2002) Synthesis and structure activity relationship of 2-aminobenzophenone derivatives as antimitotic agents. J Med Chem 45:2556–2562

    CAS  Article  PubMed  Google Scholar 

  21. Lipinski C, Lombardo F, Dominy B, Feeney P (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 23:3–25

    CAS  Article  Google Scholar 

  22. Marvania B, Lee P-C, Chaniyara R, Dong H, Suman S, Kakadiya R, Chou T-C, Lee T-C, Shah A, Su T-L (2011) Design, synthesis and antitumor evaluation of phenyl N-mustard-quinazoline conjugates. Bioorg Med Chem 19:1987–1998

    CAS  Article  PubMed  Google Scholar 

  23. Molinspiration Cheminformatics, Bratislava, Slovak Republic, Available from: http://www.molinspiration.com/services/properties.html

  24. Moriguchi I, Hirono S, Liu Q, Nakagome I, Matsushita Y (1992) Simple method of calculating octanol/water partition coefficent. Chem Pharm Bull 40:127–130

    CAS  Article  Google Scholar 

  25. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicty assay. J Immuno Methods 65:55–63

    CAS  Article  Google Scholar 

  26. Mourelatos C, Kareli D, Dafa E, Argyraki M, Koutsourea A, Papakonstantinou I, Fousteris M, Pairas G, Nikolaropoulos S, Lialiaris TS (2012) Cytogenetic and antineoplastic effects by newly synthesised steroidal alkylators in lymphocytic leukaemia P388 cells in vivo. Muta Res 7:1–6

    Article  Google Scholar 

  27. Osterberg T, Norinder U (2000) Prediction of polar surface area and drug transport processes using simple parameters and PLS statistics. J Chem Inf Comput Sci 40:1408–1411

    CAS  Article  PubMed  Google Scholar 

  28. Ottosen ER, Sorenson MD, Bjorkiing F, Nielsen TS, Fjording MS, Aaes H, Binderup L (2003) Synthesis and structure activity relationship of aminobenzophenones: a novel class of p38 MAP Kinase inhibitors with high anti-inflammatory activity. J Med Chem 46:5651–5662

    CAS  Article  PubMed  Google Scholar 

  29. Pajouhesh H, Lenz GR (2005) Medicinal chemistry properties of successful central nervous system drugs. NeuroRx 2:541–553

    PubMed Central  Article  PubMed  Google Scholar 

  30. Peng GW, Marquez VE, Driscoll JS (1975) Potential central nervous system antitumor agents. Hydantoin derivatives. J Med Chem 18:846–849

    CAS  Article  PubMed  Google Scholar 

  31. Reux B, Weber V, Galmier M-J, Borel M, Madesclaire M, Madelmont J-C, Debiton E, Coudert P (2008) Synthesis and cytotoxic properties of new fluorodeoxyglucose-coupled chlorambucil derivatives. Bioorg Med Chem 16:5004–5020

    CAS  Article  PubMed  Google Scholar 

  32. Scutaru AM, Wenzel M, Gust R (2011) Bivalent bendamustine and melphalan derivatives as anticancer agents. Eur J Med Chem 46:1604–1615

    CAS  Article  PubMed  Google Scholar 

  33. Singh RK, Devi S, Prasad DN (2011) Synthesis, physicochemical and biological evaluation of CNS active 2-aminobenzophenone derivatives as potent skeletal muscle relaxant. Arab J Chem (in press): doi: 10.1016/j.arabjc.2011.11.013

  34. Singh RK, Prasad DN, Bhardwaj TR (2012a) Synthesis, alkylation activity and physicochemical evaluation of benzodiazpine-linked nitrogen mustard agent to penetrate the blood-brain barrier. Asian J Chem 24(12):5605–5608

    CAS  Google Scholar 

  35. Singh RK, Sharma S, Malik S, Sharma D, Prasad DN, Bhardwaj TR (2012b) Synthesis and study of chemical delivery system for targeting nitrogen mustard to the brain. Asian J Chem 24(12):5635–5638

    CAS  Google Scholar 

  36. Singh RK, Prasad DN, Bhardwaj TR (2012c) Synthesis, physicochemical properties and kinetic study of bis(2-chloroethyl)amine as cytotoxic agent for brain delivery. Arab J Chem (in press): doi: 10.1016/j.arabjc.2012.11.005

  37. Singh RK, Prasad DN, Bhardwaj TR (2013) Synthesis, in vitro/in vivo evaluation and in silico physicochemical study of prodrug approach for brain targeting of alkylating agent. Med Chem Res (in press): doi: 10.1007/s00044-013-0537-0

  38. Sternbach LH, Reeder E, Keller O, Metlesics W (1961) Quinazolines and 1,4-benzodiazepine, III. Substituted 2-amino-5-phenyl-3H-1,4-benzodiazepine-4-oxides. J Org Chem 26(11):4488–4497

    CAS  Article  Google Scholar 

  39. Sternbach LH, Fryer RI, Metlesics W, Sach G, Stempel A (1962) Quinazolines and 1,4-benzodiazepines. V. o-Aminobenzophenones. J Org Chem 27(11):3781–3788

    CAS  Article  Google Scholar 

  40. Sternbach LH, Fryer RI, Keller O, Metlesics W, Sach G, Steiger N (1963) Quinazolines and 1,4-benzodiazepines. X. Nitro-substituted 5-phenyl-1,4-benzodiazepine derivatives. J Med Chem 6:261–265

    CAS  Article  PubMed  Google Scholar 

  41. Su D-S, Lim JL, Tinney E, Wan B-L, Murphy KL, Reiss DR, Harrell M, O’Malley SS, Ransom RW, Chang RSL, Pettibone DJ, Yu J, Tang C, Freidionger RM, Bock MG, Anthony NJ (2008) 2-Aminobenzophenones as a novel class of bradykinin B1 receptor antagonists. J Med Chem 51:3946–3952

    CAS  Article  PubMed  Google Scholar 

  42. Walsh DA (1980) The Synthesis of 2-aminobenzophenones. Synthesis: 677–688

  43. Wang Q, Rager JD, Weinstein K, Kardos PS, Dobson GL, Li J, Hidalgo IJ (2005) Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int J Pharm 288:349–359

    CAS  Article  PubMed  Google Scholar 

  44. Zheng Q-Z, Zhang F, Cheng K, Yang Y, Chen Y, Qian Y, Zhang H-J, Li H-Q, Zhou C-F, An S-Q, Jiao Q-C, Zhu H-L (2010) Synthesis, biological evaluation and molecular docking studies of amide-coupled benzoic nitrogen mustard derivatives as potential antitumor agents. Bioorg Med Chem 18:880–886

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to College Managing Committee, SCOP, Nangal for providing necessary facilities to carry out research work. Authors wish to express their gratitude to Dr. Manoj Kumar, Professor of Pharmaceutical Chemistry, UIPS, Panjab University, Chandigarh to carry out ADME study at his lab. Authors are also thankful to ISFAL, ISF College of Pharmacy, Moga (Punjab) for carrying out cell line studies and SAIF, Panjab University, Chandigarh for cooperation in getting the spectral data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Singh.

Additional information

Design, synthesis and evaluation of aminobenzophenone derivatives containing nitrogen mustard moiety as potential central nervous system antitumor agent.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singh, R.K., Prasad, D.N. & Bhardwaj, T.R. Design, synthesis and evaluation of aminobenzophenone derivatives containing nitrogen mustard moiety as potential central nervous system antitumor agent. Med Chem Res 22, 5901–5911 (2013). https://doi.org/10.1007/s00044-013-0582-8

Download citation

Keywords

  • 2-Aminobenzophenone
  • Nitrogen mustard
  • Blood–brain barrier
  • Physicochemical ADME descriptors
  • NBP assay
  • In vitro cytotoxicity