Advertisement

Medicinal Chemistry Research

, Volume 22, Issue 12, pp 5730–5738 | Cite as

Synthesis, spectroscopic characterization, X-ray structure, and in vitro antitumor activities of new triorganotin(IV) complexes with sulfur donor ligand

  • Mojdeh Safari
  • Mohammad Yousefi
  • Hilary A. Jenkins
  • Maryam Bikhof Torbati
  • Amir Amanzadeh
Original Research

Abstract

The discovery of the anticancer properties of cisplatin promoted a great deal of interest in the area of metal-based antitumor agents. With this aim, a new series of triorganotin(IV) derivatives: Ph3SnL (1), BZ3SnL (2), where L = morpholine-1-carbodithioate (MCDT) have been synthesized by the reaction of triorganotin(IV) chlorides with the ligand-salt in the appropriate molar ratio. All the complexes have been characterized by FT-IR, 1H, 13C, and 19Sn NMR spectroscopy. In addition, the molecular structure of complex 1 was determined by single crystal X-ray diffraction study. X-ray crystallographic analysis shows that in the compound [Ph3Sn(MCDT)], the Sn ion is in a four-coordinate environment with a dithiocarbamate ligand coordinated to the tin(IV) in a monodentate fashion through the sulfur atom. Furthermore, the cytotoxic activity of the free ligand (MCDT) as well as its triorganotin(IV) complexes were tested against tumor cell lines human cervix carcinoma HeLa, human myelogenous leukemia K562 and normal immunocompetent cells, peripheral blood mononuclear cells PBMC. The cytotoxic results indicate that coupling of MCDT with R3Sn(IV) metal center results in a complex with important biological properties and remarkable cytotoxic activity, since we observe IC50 values better to that of the antitumor drug cisplatin.

Keywords

Triorganotin (IV) complex Dithiocarboxylate Crystal structure NMR spectroscopy Antitumor activity Cell lines 

Notes

Acknowledgments

The authors like to express their profound gratitude to the Azad University, Shahr-e-Rey Branch, Iran and National Cell Bank of Pasteur Institute of Iran for providing necessary research facilities and financial assistance. The authors also gratefully acknowledge the valuable help of Dr. Mohammad Ali Shokrgozar, head of National Cell Bank of Iran, Pasteur Institute of Iran.

References

  1. Awang N, Yousef NSAM, Baba I, Fadilah Rajab N, Hamid A, Yamin BM, Abdul Halim A (2010) Synthesis and characterization of organotin (IV) N-Methyl-N Isopropyldithiocarbamate compounds: X-ray crystal structure of (CH3)2Sn[S2CN(CH3)(i-C3H7)]2. World Appl Sci J 9:804–810Google Scholar
  2. Awang N, Baba I, Yamin BM, Sham Othman M, Abdul Halim A (2011) Synthesis, characterization and crystal structure of triphenyltin(IV) N-alkyl-N-cyclohexyldithiocarbamate compounds. World Appl Sci J 12:630–635Google Scholar
  3. Cea-Olivares R, Gomez-Ortiz LA, Garcia-Montalvo V, Gavino Ramirez RL, Hernandez-Ortega S (2000) Formation of a novel trinuclear spirostannoxane tin(IV) compound. Crystal and molecular structure of [Sn(nBu)(Cl)[(OCH2CH2S)2Sn(nBu)]2] and the stannolane [(nBu)Sn(SCH2CH2O)SCH2CH2OH]. J Inorg Chem 39:2284–2288CrossRefGoogle Scholar
  4. Fuentes-Martinez JP, Toledo-Martinez I, Roman-Bravo P, Garcia P, Godoy-Alcantar C, Lopez-Cardoso M, Morales-Rojas H (2009) Diorganotin(IV) dithiocarbamate complexes as chromogenic sensors of anion binding. J Polyhedron 28(3953):3966Google Scholar
  5. Gomez-Ruiz S, Kaluderovic GN, Prashar S, Hey-Hawkins E, Eric A, Ziazak Z, Juranic ZD (2008) Study of the cytotoxic activity of di and triphenyltin(IV) carboxylate complexes. J Inorg Biochem 102:2087–2096CrossRefPubMedGoogle Scholar
  6. Gomez-Ruiz S, Prashar S, Walther T, Fajardo M, Steinborn D, Paschke R, Kaluderovic GN (2010) Cyclopentadienyltin(IV) derivatives: synthesis, characterization and study of their cytotoxic activities. J Polyhedron 29:16–23CrossRefGoogle Scholar
  7. Hadjikakou SK, Hadjiliadis N (2009) Antiproliferative and anti-tumor activity of organotin compounds. Coord Chem Rev 253:235–249CrossRefGoogle Scholar
  8. Husain A, Nami SAA, Siddiqi KS (2010) Synthesis, characterization and biocidal activities of heterobimetallic complexes having tin(IV) as a padlock. J Mol Struct 970:117–127CrossRefGoogle Scholar
  9. Kalu Cerovi GN, Paschke R, Prashar S, Gómez-Ruiz S (2010) Synthesis, characterization and biological studies of 1-D polymeric triphenyltin(IV) carboxylates. J Organomet Chem 695:1883–1890CrossRefGoogle Scholar
  10. Khan S, Nami SAA, Siddiqi KS (2008) Mononuclear indolyldithiocarbamates of SnCl4 and R2SnCl2: spectroscopic, thermal characterizations and cytotoxicity assays in vitro. J Organomet Chem 693:1049–1057CrossRefGoogle Scholar
  11. Khan H, Badshah A, Murtaz G, Said M, Rehman Z, Neuhausen C, Todorova M, Jean-Claude BJ, Butler IS (2011) Synthesis, characterization and anticancer studies of mixed ligand vdithiocarbamate palladium(II) complexes. Eur J Med Chem 46:4071–4077CrossRefPubMedGoogle Scholar
  12. Menezes DC, Vieira FT, de Lima GM, Wardell JL, Cortés ME, Ferreira MP, Soares MA, Vilas Boas A (2008) The in vitro antifungal activity of some dithiocarbamate organotin(IV) compounds on Candida albicans—amodelforbiological interaction of organotin complexes. Appl Organomet Chem 22:221–226CrossRefGoogle Scholar
  13. Metsios A, Verginadis I, Simos Y, Batistatou A, Peschos D, Ragos V, Vezyraki P, Evangelou A, Karkabounas S (2012) Cytotoxic and anticancer effects of the triorganotin compound [(C6H5)3Sn(cmbzt)]: an in vitro, ex vivo and in vivo study. Eur J Pharm Sci 47:490–496CrossRefPubMedGoogle Scholar
  14. Moldeus T, Hogberg J, Orrhenius S, Fleischer S, Packer L (1978) Isolation and use of liver cells. Methods Enzymol 52:60–71CrossRefPubMedGoogle Scholar
  15. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  16. Ohno M, Abe T (1991) Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J Immunol Methods 145:199–203CrossRefPubMedGoogle Scholar
  17. Rehman W, Kaleem Baloch M, Badshah A (2008) Synthesis, spectral characterization and bio-analysis of some organotin(IV) complexes. Eur J Med Chem 43:2380–2385CrossRefPubMedGoogle Scholar
  18. Rehman Z, Muhammad N, Shuja S, Ali S, Butler IS, Meetsma A, Khan M (2009a) New dimeric, trimeric and supramolecular organotin(IV) dithiocarboxylates: synthesis, structural characterization and biocidal activities. J Polyhedron 28:3439–3448CrossRefGoogle Scholar
  19. Rehman Z, Shah A, Muhammad N, Ali S, Qureshi R, Meetsma A, Butler IS (2009b) Synthesis, spectroscopic characterization, X-ray structure and evaluation of binding parameters of new triorganotin(IV) dithiocarboxylates with DNA. Eur J Med Chem 44:3986–3993CrossRefPubMedGoogle Scholar
  20. Rehman A, Hussain M, Rehman Z, Rauf A, Nasim FH, Tahir AA, Ali S (2010) New tetrahedral, square-pyramidal, trigonal-bipyramidal and octahedral organotin(IV) 4-ethoxycarbonylpiperazine-1-carbodithioates: synthesis, structural properties and biological applications. J Organomet Chem 695:1526–1532CrossRefGoogle Scholar
  21. Rehman Z, Muhammad N, Ali S, Butler IS, Meetsma A (2011) New mononuclear organotin(IV) 4-benzhydrylpiperazine-1-carbodithioates: synthesis, spectroscopic characterization, X-ray structures and in vitro antimicrobial activities. J Inorg Chim Acta 373:187–194CrossRefGoogle Scholar
  22. Sedaghat T, Jalilian F (2009) New adducts of diorganotin(IV) chlorides with a new multifunctional schiff baseligand: synthesis and spectral properties. J Iran Chem Soc 6:271–276CrossRefGoogle Scholar
  23. Shaheen F, Rehman Z, Ali S, Meetsma A (2012) Structural properties and antibacterial potency of new supramolecular organotin(IV) dithiocarboxylates. J Polyhedron 31:697–703CrossRefGoogle Scholar
  24. Shahzadi S, Ali S, Bhatti MH, Fettouhi M, Athar M (2006) Chloro-diorganotin(IV) complexes of 4-methyl-1-piperidine carbodithioic acid: synthesis, X-ray crystal structures, spectral properties and antimicrobial studies. J Organomet Chem 691:1797–1802CrossRefGoogle Scholar
  25. Sisido K, Takeda Y (1961) Direct synthesis of organotin compounds. I. Di- and tribenzyltin chloride. J Am Chem Soc 83:538–541CrossRefGoogle Scholar
  26. Tarassoli A, Sedaghat T, Neumuller B, Ghassemzadeh M (2001) Synthesis, spectroscopic investigations and crystal structures of organotin(IV) derivatives of 2-amino-1-cyclopentene-1-carbodithioic acid. J Inorg Chim Acta 318:15–22CrossRefGoogle Scholar
  27. Yin H, Wang C, Hong M, Wang D (2004) Synthesis, spectroscopic properties and crystal structures of SnBr2[S2CN(CH2CH2)2O]2, (4-F-C6H4CH2)2Sn(Cl)S2CN(CH2CH2)2O and (2-F-C6H4CH2)3SnS2CN(CH2CH2)2O. J Organomet Chem 689:1277–1283CrossRefGoogle Scholar
  28. Yousefi M, Safari M, Bikhof Torbati M, Molla Kazemiha V, Sanati H, Amanzadeh A (2012) New mononuclear diorganotin(IV) dithiocarboxylates: synthesis, characterization and study of their cytotoxic activities. J Appl Organomet Chem 26:438–444CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ChemistryShahr-e-Rey Branch, Islamic Azad UniversityTehranIran
  2. 2.Department of Chemistry & Chemical BiologyMcMaster UniversityHamiltonCanada
  3. 3.Department of BiologyShahr-e-Rey Branch, Islamic Azad UniversityTehranIran
  4. 4.National Cell Bank of Iran, Pasteur Institute of IranTehranIran

Personalised recommendations