Advertisement

Medicinal Chemistry Research

, Volume 22, Issue 11, pp 5267–5273 | Cite as

Synthesis and fungicidal evaluation of some new anilinopyrimidine derivatives

  • Mohamed A. Waly
  • Eman T. Bader-Eldien
  • Mohamed E. Aboudobarah
  • El-Shahat T. Aboumosalam
Original Research
  • 271 Downloads

Abstract

New series of anilinopyrimidine and pyrimido[4,5-c]azepine derivatives were synthesized to evaluate their in vitro antifungal activities. N-acetyl anilinopyrimidine derivative 7 showed similar fungicidal activity against Aspergillus niger compared to the reference fungicidal pyrimethanil 2. In addition, it exhibits shorter bursting time (2.5 μg/ml in 9 h) than fungicidal drug 2 (2.5 μg/ml in 12 h). The brominated pyrimidine derivative 5 displayed higher fungicidal activity than those of the cyano derivative 6 and the 6-bromoalkyl analogs 4. The fused pyrimido[4,5-c]azepine derivative 10 showed lower activity toward A. niger. A new application for the pyridinium bromochromate as a selective brominating agent on the pyrimidine ring rather on the side chain methyl group was studied.

Keywords

Pyrimethanil Pyridinium bromochromate (PBC) Intramolecular cyclization Aspergillus niger Antifungal activity 

References

  1. Akallal R, Debieu D, Lanen C, Daboussi MJ, Fritz R, Malosse C, Bach J, Leroux P (1998) Inheritance and mechanisms of resistance to tebuconazole, a sterol C-14-demethylation inhibitor, in Nectria haematococca. Pestic Biochem Physiol 60:147–166CrossRefGoogle Scholar
  2. Albertson GD, Niimi M, Cannon RD, Jenkinson HF (1996) Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimirob Agents Chemother 40:2835–2841Google Scholar
  3. Chapeland F, Fritz R, Lanen C, Gredt M, Leroux P (1999) Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea (Botryotinia fuckeliana). Pestic Biochem Physiol 64:85–100CrossRefGoogle Scholar
  4. De Waard MA, Van Nistelrooy JGM (1979) Mechanism of resistance to fenarimol in Aspergillus nidulans. Pestic Biochem Physiol 10:219–229CrossRefGoogle Scholar
  5. De Waard MA, Van Nistelrooy JGM (1988) Accumulation of SBI fungicides in wild-type and fenarimol-resistant isolates of Penicillium italicum. Pestic Sci 22:371–381CrossRefGoogle Scholar
  6. Ellis’ GP, Romeny-Alexander TM (1987) Cyanation of aromatic halides. Chem Rev 87:779–794CrossRefGoogle Scholar
  7. Forster B, Staub T (1996) Basis for use strategies of anilinopyrimidine and phenylpyrrole fungicides against Botrytis cinerea. Crop Prot 15:529–537CrossRefGoogle Scholar
  8. Friedrich F, Manfred K, Gerd K, Hans L, Brigitte B (1981) Fungicidal compositions containing pyrimidines. German Patent DD 151404Google Scholar
  9. Fritz R, Lanen C, Colas V, Leroux P (1997) Inhibition of methionine biosynthesis in Botrytis cinerea by the anilinopyrimidine fungicide pyrimethanil. Pestic Sci 49:40–46CrossRefGoogle Scholar
  10. Hilber UW, Hilber-Bodmer M (1998) Genetic basis and monitoring of resistance of Botryotinia fuckeliana to anilinopyrimidines. Plant Dis 82:496–500CrossRefGoogle Scholar
  11. Joseph-Horne T, Hollomon D, Manning N, Kelly SL (1996) Investigation of the sterol composition and azole resistance in field isolates of Septoria tritici. Appl Environ Microbiol 62:184–190PubMedCentralPubMedGoogle Scholar
  12. Leroux P, Greet M (1995) Étude in vitro de la résistance de Botrytis cinerea aux fongicides anilinopyrimidines. Agronomie 15:367–370CrossRefGoogle Scholar
  13. Leroux P, Chapeland F, Giraud T, Brygoo Y, Gredt M (1999) Resistance to sterol biosynthesis inhibitors and various other fungicides in Botrytis cinerea. In: Lyr H, Russell P, Dehne HW, Sisler HD (eds) Modern Kelly fungicides and antifungal compounds II. Intercept Ltd, Andover, pp 297–303Google Scholar
  14. Milling RJ, Richardson CJ (1995) Mode of action of the anilino-pyrimidine fungicide pyrimethanil. 2. Effects on enzyme secretion in Botrytis cinerea. Pestic Sci 45:43–48CrossRefGoogle Scholar
  15. Nagata T, Masuda K, Maeno S, Miura I (2003) Synthesis and structure–activity study of fungicidal anilinopyrimidines leading to mepanipyrim (KIF-3535) as an anti-Botrytis agent. Pest Manag Sci 60:399–407CrossRefGoogle Scholar
  16. Park D, Robinson P (1996) Internal pressure of hyphal tips of fungi, and its significance in morphogenesis. Ann Bot (Lond) 30:425–439Google Scholar
  17. Patwari SB, Baseer MA, Vibhute YB, Bhusare SR (2003) Pyridinium bromochromate (PBC): a new and efficient reagent for bromination of hydroxy aromatics. Tetrahedron Lett 44:4893–4894CrossRefGoogle Scholar
  18. Prasad R, De Wergifosse P, Goffeau A, Balzi E (1995) Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27:320–329CrossRefPubMedGoogle Scholar
  19. Roehrl MH, Croft WJ, Liao Q, Wang JY, Kradin RL (2007) Hemorrhagic pulmonary oxalosis secondary to a non-invasive Aspergillus niger fungus ball. Virchows Arch 451:1067–1073CrossRefPubMedGoogle Scholar
  20. Samson RA, Houbraken J, Summerbell RC, Flannigan B, Miller JD (2001) Common and important species of fungi and actinomycetes in indoor environments. In: Microorganisms in home and indoor work environments. Taylor and Francis, New York, pp 287–292Google Scholar
  21. Sarrafi Y, Sadatshahabi M, Alimohammadi K (2009) A mild, simple and efficient method for selective alpha-monobromination of 1,3-diketones and beta-ketoesters using pyridinium bromochromate. Chin Chem Lett 20:393–396CrossRefGoogle Scholar
  22. Steinbach WJ, Stevens DA (2003) Review of newer antifungal and immunomodulatory strategies for invasive Aspergillosis. Clin Infect Dis 37:157–187CrossRefGoogle Scholar
  23. Toffolatti SL, Vercesi A, Vecchio A, Piccolo V, (2008) Fungicide effect on Aspergillus section Nigri. In: Modern fungicides and antifungal compounds, vol V. DPG Selbstverlag, Braunschweig, pp 331–337Google Scholar
  24. Tunev SS, Ehrhart EJ, Jensen HE, Foreman JH, Richter RA, Messick JB (1999) Necrotizing mycotic vasculitis with cerebral infarction caused by Aspergillus niger in a horse with acute typhlocolitis. Vet Pathol 36(4):347–351CrossRefPubMedGoogle Scholar
  25. Waly MA, Abou Dobara MI (2009) Syntheses and characterization of the pyrimido[1,2-][1,3,5]triazinthione as a new ring system and antibacterial agent. Pol J Chem 83:1601–1607Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mohamed A. Waly
    • 1
  • Eman T. Bader-Eldien
    • 1
  • Mohamed E. Aboudobarah
    • 2
  • El-Shahat T. Aboumosalam
    • 1
  1. 1.Chemistry Department, Faculty of ScienceDamietta UniversityDamiettaEgypt
  2. 2.Botany Department, Faculty of ScienceDamietta UniversityDamiettaEgypt

Personalised recommendations