Skip to main content
Log in

Synthesis and anticholinesterase activity of fumaramide derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of fumaramide derivatives were synthesized from substituted benzanilines and their cholinesterase inhibitory activity was assayed according to Ellman’s method using galanthamine-HBr as the reference compound. Most of the fumaramide compounds showed inhibitory activity of both cholinesterase enzymes. Compounds 29 (IC50 = 0.14 μM) and 30 (IC50 = 16.50 μM) were found to be the most active inhibitors on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes, respectively. Molecular docking studies were performed with Surflex-Dock programme to provide the possible interactions between compounds and enzymes. A Lineweaver–Burk plot and molecular modelling studies showed that fumaramide compounds targeted both the catalytic anionic site and the peripheral anionic site of AChE. It was revealed that the nature of α,β-unsaturated 1,4-diketone moiety in fumaramide compounds brought about useful and efficient modification especially on AChE inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    Article  PubMed  Google Scholar 

  • Castro A, Martinez A (2001) Peripheral and dual binding site acetylcholinesterase inhibitors: implications in treatment of Alzheimer’s disease. Mini Rev Med Chem 1:267–272

    Article  PubMed  CAS  Google Scholar 

  • Castro A, Conde S, Rodriguez-Franco MI, Martinez A (2002) Non-cholinergic pharmacotherapy approaches to the future treatment of Alzheimer’s disease. Mini Rev Med Chem 2:37–50

    Article  PubMed  CAS  Google Scholar 

  • Correa-Basurto J, Alcantara IV, Espinoza-Fonseca M, Trujillo-Ferrara JG (2005) p-Aminobenzoic acid derivatives as acetylcholinesterase inhibitors. Eur J Med Chem 40:732–735

    Article  PubMed  CAS  Google Scholar 

  • Correa-Basurto J, Espinoza-Raya J, Gonzalez-May M, Espinoza-Fonseca LM, Vasquez-Alcantara I, Trujillo-Ferrara JG (2006) Inhibition of acetylcholinesterase by two arylderivatives: 3a-acetoxy-5h-pyrrolo(1,2-a) (3,1)benzoxazin-1,5-(3ah)-dione and cis-N-P-acetoxy-phenylisomaleimide. J Enzyme Inhib Med Chem 21:133–138

    Article  PubMed  CAS  Google Scholar 

  • Correa-Basurto J, Flores-Sandoval C, Marin-Cruz J, Royo-Dominguez A, Espinoza-Fonseca LM, Trujillo-Ferrara JG (2007) Docking and quantum mechanic studies on cholinesterases and their inhibitors. Eur J Med Chem 42:10–19

    Article  PubMed  CAS  Google Scholar 

  • Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 4:131–138

    Article  PubMed  CAS  Google Scholar 

  • Decker M, Kraus B, Heilmann J (2008) Design, synthesis and pharmacological evaluation of hybrid molecules out of quinazolinimines and lipoic acid lead to highly potent and selective butyrylcholinesterase inhibitors with antioxidant properties. Bioorg Med Chem 16:4252–4261

    Article  PubMed  CAS  Google Scholar 

  • Doraiswamy PM (2002) Non-cholinergic strategies for treating and preventing Alzheimer’s disease. CNS Drugs 16:811–824

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney D, Andies V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Fallarero A, Oinonen P, Gupta S, Blom P, Galkin A (2008) Inhibition of acetylcholinesterase by coumarins: the case of coumarin 106. Pharmacol Res 58:215–221

    Article  PubMed  CAS  Google Scholar 

  • Fawole OA, Amoo SO, Ndhlala AR, Light ME, Finnie JF, Van Staden J (2010) Anti-inflammatory, anticholinesterase, antioxidant and phytochemical properties of medicinal plants used for pain-related ailments in South Africa. J Ethnopharmacol 127:235–241

    Article  PubMed  CAS  Google Scholar 

  • Giacobini E (2003) Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res 28:515–522

    Article  PubMed  CAS  Google Scholar 

  • Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu QS, Mamczarz J, Holloway HW, Giordano T, Chen D, Furukawa K, Sambamurti K, Brossi A, Lahiri DK (2005) Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci 102:17213–17218

    Article  PubMed  CAS  Google Scholar 

  • Grossberg GT (2003) Cholinesterase inhibitors for the treatment of Alzheimer’s disease: getting on and staying on. Curr Ther Res 64:216–235

    Article  CAS  Google Scholar 

  • Harel M, Quinn DM, Nair HK, Silman I, Sussman JL (1996) The X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase. J Am Chem Soc 118:2340–2346

    Article  CAS  Google Scholar 

  • Hasan A, Khan KM, Sher M, Maharvi GM, Nawaz SA, Choudhary MI, Rahman AU, Supuran CT (2005) Synthesis and inhibitory potential towards acetylcholinesterase, butyrylcholinesterase and lipoxygenase of some variably substituted chalcones. J Enzyme Inhib Med Chem 20:41–47

    Article  PubMed  CAS  Google Scholar 

  • Jhee SS, Shiovitz T, Hartman RD, Messina J, Anand R, Sramek J, Cutler NR (2002) Centrally acting antiemetics mitigate nausea and vomiting in patients with Alzheimer’s disease who receive rivastigmine. Clin Neuropharmacol 25:122–123

    Article  PubMed  Google Scholar 

  • Johannsen P (2004) Long-term cholinesterase inhibitor treatment of Alzheimer’s disease. CNS Drugs 18:757–768

    Article  PubMed  CAS  Google Scholar 

  • Kamal MA, Klein P, Luo W, Li Y, Holloway HW, Tweedie D, Greig NH (2008) Kinetics of human serum butyrylcholinesterase inhibition by a novel experimental Alzheimer therapeutic, dihydrobenzodioxepine cymserine. Neurochem Res 33:745–753

    Article  PubMed  CAS  Google Scholar 

  • Knapp MJ, Knopman DS, Solomon PR, Pendlebury WW, Davis CS, Gracon SI (1994) A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. The tacrine study group. J Am Med Assoc 271:985–991

    Article  CAS  Google Scholar 

  • Li B, Stribley JA, Ticu A, Xie W, Schopfer LM, Hammond P, Brimijoin S, Hinrichs SH, Lockridge O (2000) Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J Neurochem 75:1320–1331

    Article  PubMed  CAS  Google Scholar 

  • Marston A, Kissling J, Hostettmann K (2002) A rapid Tlc bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem Anal 13:51–54

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Guillozet A, Show P, Levey A, Duysen EGM, Lockridge O (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110:627–639

    Article  PubMed  CAS  Google Scholar 

  • Pang YP, Quiram P, Jelacic T, Hong F, Brimjoin S (1996) Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase. Steps toward novel drugs for treating Alzheimer’s disease. J Biol Chem 271:23646–23649

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Blessed G, Tomlinson BE (1978) Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol 4:273–277

    Article  PubMed  CAS  Google Scholar 

  • Schulz V (2003) Ginkgo extract or cholinesterase inhibitors in patients with dementia: what clinical trials and guidelines fail to consider. Phytomedicine 10:74–79

    Article  PubMed  CAS  Google Scholar 

  • Shen T, Tai K, Henchman RH, McCammon JA (2002) Molecular dynamics of acetylcholinesterase. Acc Chem Res 35:332–340

    Article  PubMed  CAS  Google Scholar 

  • Terry AV, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    Article  PubMed  CAS  Google Scholar 

  • Trujillo-Ferrara J, Montoya Cano L, Espinoza-Fonseca M (2003) Synthesis, anticholinesterase activity and structure–activity relationships of M-aminobenzoic acid derivatives. Bioorg Med Chem Lett 13:1825–1827

    Article  PubMed  CAS  Google Scholar 

  • Vitorović-Todorović MD, Juranić IO, Mandić LM, Drakulić BJ (2010) 4-Aryl-4-oxo-N-phenyl-2-aminylbutyramides as acetyl- and butyrylcholinesterase inhibitors. Preparation, anticholinesterase activity, docking study, and 3d structure-activity relationship based on molecular interaction fields. Bioorg Med Chem 18:1181–1193

    Article  PubMed  Google Scholar 

  • Wilkinson DG, Francis PT, Schwam E, Payne-Parris J (2004) Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 21:453–478

    Article  PubMed  CAS  Google Scholar 

  • Yerdelen KO (2012) Solvent-free solid supported and phase transferred catalyzed synthesis of benzaniline derivatives using microwave irradiation. Int J Pharm Sci Res 3:126–129

    CAS  Google Scholar 

  • Zhou X, Wang XB, Wang T, Kong LY (2008) Design, synthesis and acetylcholinesterase inhibitory activity of novel coumarin analogues. Bioorg Med Chem 16:8011–8021

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by Ataturk University Research Fund (Project No: 2011/294), Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Ozden Yerdelen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yerdelen, K.O., Gul, H.I. Synthesis and anticholinesterase activity of fumaramide derivatives. Med Chem Res 22, 4920–4929 (2013). https://doi.org/10.1007/s00044-013-0493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0493-8

Keywords

Navigation