Skip to main content
Log in

Antioxidant and α-glucosidase inhibitory compounds from Pimpinella candolleana Wight et Arn.

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

EtOAc and MeOH different extracts of Pimpinella candolleana Wight et Arn. have shown the α-glucosidase inhibitory and antioxidant activities when they were assayed in vitro. Chemical constituents of both extracts were isolated by column chromatography, and identified by MS and NMR spectroscopic data. Nine compounds were isolated, including 3 sterols, 2 flavones, 1 triterpene, 1 glucoside, 1 phenol derivatives, and 1 other compound. Their structures were identified as ursolic acid (1), luteolin (2), urea (3), stigmasta-5,22-dien-3-ol acetate (4), erythrol (5), isovitexin (6), 1-(4-hydroxyphenyl)-1,2-ethanediol (7), daucosterol (8), and β-sitosterol (9). Compound 1 (IC50 = 4.42 μg ml−1), 2 (IC50 = 5.96 μg ml−1), 4 (IC50 = 67.43 μg ml−1) and 6 (IC50 = 68.71 μg ml−1) showed α-glucosidase inhibitory activity. Compound 2 (IC50 = 0.99 μg ml−1) had antioxidant activity. All compounds except for 1 and 9 were isolated from this genus for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Bayati FA (2008) Synergistic antibacterial activity between thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J Ethnopharmacol 116:403

    Article  PubMed  CAS  Google Scholar 

  • Chen XP, Xu L, Chen HY (2008) Effects of luteolin on aldose reductase, NOS system and Na+–K+–ATPase in cardiac muscles of early diabetes rats. J Shanxi Med Univ 38:689–692

    Google Scholar 

  • Chen YS, Zhang K, Zhao SQ, Zhang JH (2010) Studies on the lowering blood sugar substances from agrimony (II). J Chin Med Mat 33:724

    CAS  Google Scholar 

  • Corry DB, Tuck ML (2000) Protection from vascular risk in diabetic hypertension. Curr Hypertens Rep 2:154–159

    Article  PubMed  CAS  Google Scholar 

  • Editorial Committee of Flora of China, Chinese Academy of Sciences (2005) Flora of China, Vol 55. Science Press, Beijing, p 67

    Google Scholar 

  • Feng SX, Liu MF, Wei XY, Lin LD (2008) Triterpenoids and flavonoids from the leaves of Microcos paniculata. J Trop Subtrop Bot 16:51

    CAS  Google Scholar 

  • Filomena C, Daniela R, Federica M, Monica RL, Felice S (2009) Protection against neurodegenerative diseases of Iris pseudopumila extracts and their constituents. Fitoterapia 80:62–67

    Article  Google Scholar 

  • Guang GY, Wang DP, Xu BX, Cao PX, Zhang JX (2003) Study on the compounds from Pimpinella candolleana. Guizhou Sci 21:58

    Google Scholar 

  • Gülçın İ, Oktay M, Kıreçcı E, Küfrevıoğlu Öİ (2003) Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 83:371

    Article  Google Scholar 

  • Hallwell B (1990) How to characterize a biological antioxidant. Free Radic Res Commun 9:1–2

    Article  Google Scholar 

  • Holman RR, Cull CA, Turner RC (1999) A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycaemic control over 3 years (UK Prospective Diabetes Study 44). Diabetes Care 22:960–964

    Article  PubMed  CAS  Google Scholar 

  • Hou BL, Li ZL, Li X (2005) A new flavonoid glycoside from the roots and stems of Sphaerophysa salsula. Acta Pharm Sin 40:533

    CAS  Google Scholar 

  • Hu WC, Yang NY, Deng T (2008) Chemical constituents from Lithospermum zollingeri. Cent South Pharm 6:437

    CAS  Google Scholar 

  • Huang KY, He L, Qu Y, Gao HY, Deng XM, Wu LJ (2009) Isolation and identification of chemical constituents from roots of Picrorhiza Scrophulariiflora Pennell. J Shenyang Pharm Univ 26:112–115

    CAS  Google Scholar 

  • Ishikawa T, Kondo K, Kitajima J (2003) Water-soluble constituents of coriander. Chem Pharm Bull 51:32

    Article  PubMed  CAS  Google Scholar 

  • Kang WY, Li CF (2009b) Components of antioxidant activity from Mitragyna rotudifolia Kuntze. Chin Tradit Pat Med 31:1104

    CAS  Google Scholar 

  • Kang WY, Wang JM (2010) In vitro antioxidant properties and in vivo lowering blood lipid of Forsythia suspense leaves. Med Chem Res 19:617–628

    Article  CAS  Google Scholar 

  • Kang WY, Zhang L, Song YL (2009a) α-Glucosidase inhibitors from Luculia pinciana. Chin J Chin Mat Med 34:406

    CAS  Google Scholar 

  • Li LL, Chen JP, Kong LY (2006) Chemical constituents from Monascus anka. Chin J Nat Med 4:32

    CAS  Google Scholar 

  • Lin L, Xie N, Cheng ZH, Wei M, Liu XF, Liu YP (1999) Isolation and identification of vitexin and isovitexin in Herba Cajani. J Guangzhou Univ Tradit Chin Medi 16:49

    CAS  Google Scholar 

  • Liu GY, Zheng J, Yu ZX, Zhang J, Lin RC (2005) Study on sterols and triterpenes from the stems of Akebia quinata. J Chin Med Mat 28:1060

    Google Scholar 

  • Liu KT, Tao LL, Ma X, Liu JH (2010) Focuses of research on biological activities of ursolic acid. Surv Rev 13:11–13

    CAS  Google Scholar 

  • Ma XM, Guo SR, Duan ZW, Wang XY (2007) Chemical constituents of Xuezhikang capsula. Chin Tradit Herb Drugs 38:65

    Google Scholar 

  • Ovesna Z, Vachalkova A, Horvathova K, Tothova D (2004) Pentacyclic triterpenoic acids: new chemoprotective compounds. Neoplasma 51:327–333

    PubMed  CAS  Google Scholar 

  • Poliane F, Luisa HC, Andressa CG, Flávio HR, Eloir PS, Fátima RMBS (2010) Potential insulin secretagogue effects of isovitexin and swertisin isolated from Wilbrandia ebracteata roots in non-diabetic rats. Fitoterapia 81:1180–1187

    Article  Google Scholar 

  • Pourgholami MH, Majzoob S, Javadi M, Kamalinejad M, Fanaee GHR, Sayyah M (1999) The fruit essential oil of Pimpinella anisum exerts anticonvulsant effects in mice. J Ethnopharmacol 66:211

    Article  PubMed  CAS  Google Scholar 

  • Quílez A, Berenguer B, Gilardoni G, Souccar C, de Mendonça S, Oliveira LFS, Martín-Calero MJ, Vidari G (2010) Anti-secretory, anti-inflammatory and anti-Helicobacter pylori activities of several fractions isolated from Piper carpunya Ruiz & Pav. J Ethnopharmacol 128:583–589

    Article  PubMed  Google Scholar 

  • Reichling J, Martin R, Kemmerer B (1995) Biosynthesis of pseudoisoeugenol-derivatives in liquid tissue cultures of Pimpinella anisum. Plant Cell Tissue Organ Cult 43:131

    Article  CAS  Google Scholar 

  • Shen XD, Wang B, Liu CY, Zhang J (2009) Studies on the chemical constituents from Rabdosia japonica var. glaucocalyx (Maxim.) Hara. Chin Tradit Herb Drugs 40:1883

    CAS  Google Scholar 

  • Silvia A, Rosa MG, María CR, Etile DS, José LR (2009) Anti-inflammatory activity of flavonoids from Cayaponia tayuya roots. J Ethnopharmacol 121:333–337

    Article  Google Scholar 

  • Song LR (1999) Chinese Herbs, Vol 15. Shanghai Science and Technology Press, Shanghai, p 5198

    Google Scholar 

  • Sun HX, Ye YP, Yang K (2002) Studies on the chemical constituents from Astilbe chinensis (Haxim.) Franch. et Savat. Chin J Chin Mat Med 27:751

    CAS  Google Scholar 

  • Tepe B, Akpulat HA, Sokmen M, Daferea D, Yumrutas O, Aydin E, Polissiou M, Sokmen A (2006) Screening of the antioxidative and antimicrobial properties of the essential oils of Pimpinella anisetum and Pimpinella flabellifolia from Turkey. Food Chem 97:719

    Article  CAS  Google Scholar 

  • Tirapelli CR, De Andrade CR, Cassano AO, De Souza FA, Ambrosio SR, Da Costa FB, de Oliveira AM (2007) Antispasmodic and relaxant effects of the hydroalcoholic extract of Pimpinella anisum (Apiaceae) on rat anococcygeus smooth muscle. J Ethnopharmacol 110:23

    Article  PubMed  Google Scholar 

  • Toeller M (1994) α-glucosidase inhibitors in diabetes: efficacy in NIDDM subjects. Eur J Clin Invest 24:31–35

    Article  PubMed  Google Scholar 

  • Wu B (2009) Study on chemical constituents of Periploca Omeiensis. China Pharm 18:24

    CAS  Google Scholar 

  • Xie YH, Deng P, Zhang YQ, Yu WS (2009) Studies on the chemical constituents from Cissus assamica. J Chin Med Mat 32:210

    CAS  Google Scholar 

  • Yan GF, Li XG, Yuan LJ (2006) Research on biological activity of nature luteolin. Grain oil 4:27–29

    Google Scholar 

  • Yi PL, Tai YC, Hsiang WT, Mei HL, Shui TC (2009) Neural cell protective compounds isolated from Phoenix hanceana var. formosana. Phytochemistry 70:1173–1181

    Article  Google Scholar 

  • Yin ZQ, Ye WC, Zhao SX (2004) Studies on the chemical constituents of Bombyx batryticatus. Chin J Chin Mat Med 28:52

    Google Scholar 

  • Zhang JY, Wang SS, Song QL, Gao ZG, Zhao WJ (2009) Studies on the chemical constituents of aerial parts from Gentiana scabra Bunge. Tradit Herb Drugs 40:24

    Google Scholar 

  • Zhang Q, Chang X, Kang WY (2010a) α-Glucosidase inhibitory activity of extracts of Musa basjoo Sieb. et Zucc. Sci Tech Food Indus 31:125

    Google Scholar 

  • Zhang L, Li BG, Tian FR, Zhou WM, Zheng XX, Tian JK (2010b) Studies on flavonoids of Artemisia anomala S. Moore. Chin Pharm J 45:104

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Key project in Science and Technology Agency of Henan Province (102102310019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyi Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, X., Kang, W. Antioxidant and α-glucosidase inhibitory compounds from Pimpinella candolleana Wight et Arn.. Med Chem Res 21, 4324–4329 (2012). https://doi.org/10.1007/s00044-012-9974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-9974-4

Keywords

Navigation