Medicinal Chemistry Research

, Volume 22, Issue 5, pp 2284–2292 | Cite as

Integrating GUSAR and QSAR analyses for antimalarial activity of synthetic prodiginines against multi drug resistant strain

  • Devidas T. Mahajan
  • Vijay H. Masand
  • Komalsing N. Patil
  • Taibi Ben Hadda
  • Vesna Rastija
Original Research

Abstract

In the present study, we have carried out extensive GUSAR and conventional 3D QSAR analyses of 49 synthetic prodiginines possessing moderate to high activities against multi drug resistant strain of Plasmodium falciparum. 2D and 3D descriptors, various statistical parameters, viz. R2, Radj2, standard error, Y-randomization, etc., were checked to build successful QSAR model. The best four parametric GA-MLR 3D-QSAR model was found to have Rtrain2 = 0.84; Radj2 = 0.83. GUSAR analysis was performed to vindicate the QSAR results and get additional results. The consensus GUSAR model based on QNA descriptor is found to have Rtrain2 = 0.80 and Qtrain2 = 0.76. The analyses reveal that certain groups/atoms like –F, benzylic –CH2– and –OCH3 play crucial role in deciding the antimalarial activity of prodiginines. The analyses could be useful to improve the antimalarial activity of these biologically privileged molecules.

Keywords

GUSAR QSAR Prodiginines Antimalarial activity 

Abbreviations

GUSAR

General unrestricted structure activity relationships

QSAR

Quantitative structure activity relationships

GA-MLR

Genetic algorithm multi linear regression

MDR

Multi drug resistant

References

  1. Bohari MH, Srivastava HK, Sastry GN (2011) Analogue-based approaches in anti-cancer compound modelling: the relevance of QSAR models. Org Med Chem Lett 1(3):1–12Google Scholar
  2. Filimonov DA, Poroikov VV, Borodina YV, Gloriozova TA (1999) Chemical similarity assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors. J Chem Inf Comput Sci 39:666–670CrossRefGoogle Scholar
  3. Filimonov DA, Akimov DV, Poroikov VV (2004) The method of Self-Consistent Regression for the quantitative analysis of relationships between structure and properties of chemicals. Pharm Chem J 38(1):21–24CrossRefGoogle Scholar
  4. Filimonov DA, Zakharov AV, Lagunin AA, Poroikov VV (2009) QNA based ‘Star Track’ QSAR approach SAR and QSAR. Environ Res 20(7–8):679–709Google Scholar
  5. Jawarkar RD, Masand VH, Patil KN, Mahajan DT, Youssoufi MH, Hadda TB, Kumbhare SL (2010) 3D-QSAR study on coumarin analogues as potent inhibitors of MAO-B using a COMFA approach. Der Pharma Chem 2(6):302–310Google Scholar
  6. Kokurkina GV, Dutov MD, Shevelev SA, Popkov SV, Zakharov AV, Poroikov VV (2011) Synthesis, antifungal activity and QSAR study of 2-arylhydroxynitroindoles. Eur J Med Chem 46:4374–4382PubMedCrossRefGoogle Scholar
  7. Mahajan DT, Jawarkar RD, Patil KN, Masand VH, Nazerruddin GM (2010) 3D-QSAR studies on xanthone derivatives to understand pharmacological activities as MAO inhibitors. Der Pharma Chem 2(4):298–308Google Scholar
  8. Masand VH, Jawarkar RD, Patil KN, Mahajan DT, Hadda TB, Kurhade GH (2010a) COMFA analysis and toxicity risk assessment of coumarin analogues as Mao-A inhibitors: attempting better insight in drug design. Der Pharm Lett 2(6):350–357Google Scholar
  9. Masand VH, Jawarkar RD, Patil KN, Nazerruddin GM, Bajaj SO (2010b) Correlation potential of Wiener index vis-à-vis molecular refractivity, Antimalarial activity of xanthone derivatives. Org Chem Indian J 6(1):30–38Google Scholar
  10. Masand VH, Jawarkar RD, Mahajan DT, Hadda TB, Manikrao AM, Khatale PN, Vyas JV (2011) Presuming the probable anti-inflammatory mechanism of ursolic acid: a plant derived pentacyclic triterpenoid, using molecular docking. J Comput Method Mol Des 1(2):9–13Google Scholar
  11. Masand VH, Jawarkar RD, Mahajan DT, Hadda TB, Sheikh J, Patil KN (2012a) QSAR and CoMFA studies of biphenyl analogs of the anti-tuberculosis drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine(PA-824). Med Chem Res 21:2624–2629. doi:10.1007/s00044-011-9787-x CrossRefGoogle Scholar
  12. Masand VH, Mahajan DT, Patil KN, Chinchkhede KD, Jawarkar RD, Hadda TB, Alafeefy AA, Shibi IG (2012b) k-NN, quantum mechanical and field similarity based analysis of xanthone derivatives as α-glucosidase inhibitors. Med Chem Res 1–12. doi:10.1007/s00044-012-9995-z
  13. Masand VH, Mahajan DT, Jawarkar RD, Patil KN, Hadda TB, Thakur SD, Rastija V (2012c) CoMSIA and POM analyses of anti-malarial activity of synthetic prodiginines. Bioorg Med Chem Lett 22:4827–4835PubMedCrossRefGoogle Scholar
  14. Mota SGR, Barros TFM, Castilho S (2009) 2D QSAR studies on a series of bifonazole derivatives with antifungal activity. J Braz Chem Soc 20(3):451–459CrossRefGoogle Scholar
  15. Papireddy K, Smilkstein M, Kelly JX, Shweta, Salem SM, Alhamadsheh M, Haynes SW, Challis GL, Reynolds KA (2011) Anti-malarial activity of natural and synthetic prodiginines. J Med Chem 54:5296–5306PubMedCrossRefGoogle Scholar
  16. Pasha FA, Srivastava HK, Srivastava A, Singh PP (2007) QSTR study of small organic molecules against Tetrahymena pyriformis. QSAR Combi Sci 26(1):69–84CrossRefGoogle Scholar
  17. Pinto MMM, Sousa ME, Nascimento MSJ (2005) Xanthone derivatives: new insights in biological activities. Curr Med Chem 12:2517–2538PubMedCrossRefGoogle Scholar
  18. Poroikov VV, Filimonov DA, Borodina YV, Gloriozova TA, Sitnikov VB, Sadovnikov SV, Sosnov AV (2004) Quantitative relationships between structure and delayed neurotoxicity of chemicals studied by the self-consistent regression method using the PASS program. Pharm Chem J 38(4):188–190CrossRefGoogle Scholar
  19. Srivastava HK (2008) A comparative QSPR study of alkanes with the help of computational chemistry. Bull Korean Chem Soc 29(1):67–76Google Scholar
  20. Srivastava HK, Pasha FA, Mishra SK, Singh PP (2009) Novel applications of atomic softness and QSAR study of testosterone derivatives. Med Chem Res 18(6):455–466CrossRefGoogle Scholar
  21. Wang B, Liu Y, Ke Z, Cui J, Chen W, Ma L (2008) Synthesis inhibitory activities and QSAR study of xanthone derivatives α-glucosidase inhibitors. Bioorg Med Chem 16:7185–7192PubMedCrossRefGoogle Scholar
  22. WHO report, 2010Google Scholar
  23. Williamson NR, Fineran PC, Leeper FJ, Salmond GPC (2006) The biosynthesis and regulation of bacterial prodiginines. Nat Rev 4:887–899CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Devidas T. Mahajan
    • 1
  • Vijay H. Masand
    • 1
  • Komalsing N. Patil
    • 1
  • Taibi Ben Hadda
    • 2
  • Vesna Rastija
    • 3
  1. 1.Department of ChemistryVidya Bharati CollegeAmravatiIndia
  2. 2.Laboratoire Chimie des MatériauxFSO Université Mohammed PremierOujdaMorocco
  3. 3.Department of Chemistry, Faculty of AgricultureJosip Juraj Strossmayer University of OsijekOsijekCroatia

Personalised recommendations