Medicinal Chemistry Research

, Volume 22, Issue 4, pp 1957–1971 | Cite as

Synthesis, in vitro antimicrobial, antiproliferative, and QSAR studies of N-(substituted phenyl)-2/4-(1H-indol-3-ylazo)-benzamides

  • Harsh Kumar
  • Pradeep Kumar
  • Balasubramanian NarasimhanEmail author
  • Kalavathy Ramasamy
  • Vasudevan Mani
  • Rakesh Kumar Mishra
  • Abu Bakar Abdul Majeed
Original Research


In this study, N-(substituted phenyl)-2/4-(1H-indol-3-ylazo)-benzamides (126) were synthesized and screened for their in vitro antibacterial (Gram positive; S. aureus, B. subtilis and Gram negative; E. coli) and antifungal (C. albicans and A. niger) activities. The antimicrobial activity results indicated that compound, 4-(1H-indol-3-ylazo)-N-(4-nitro-phenyl)-benzamide (12, pMICam = 1.61) was the most potent. In general, it was found that the synthesized compounds were bacteriostatic/fungistatic in action except fungicidal for A. niger. The synthesized compounds were also evaluated for their antiproliferative activity against human colon cancer (HCT116), murine leukemia (P388), and breast cancer (MCF7) cell lines. The antiproliferative study results demonstrated 4-(1H-indol-3-ylazo)-N-p-tolyl-benzamide (2, IC50 = 0.0003 μM/mL) and 4-(1H-indol-3-ylazo)-N-p-tolyl-benzamide (21, 0.0003 μM/mL) as lead compounds for the development of novel antiproliferative agents. The QSAR studies indicated the importance of topological parameters, Kier’s alpha second-order shape indice (κα2) and Wiener index (W) in describing the antimicrobial activity of the synthesized compounds.


Benzamides QSAR Antimicrobial Antiproliferative 


  1. Abdel-Jalil RJ, Momani EQEl, Hamad M, Voelter W, Mubarak MS, Smith BH, Peters DG (2010) Synthesis, antitumor activity and electrochemical behavior of some piperazinyl amidrazones. Monatsh Chem 141:251–258CrossRefGoogle Scholar
  2. Bajaj S, Sambi SS, Madan AK (2005) Prediction of anti-inflammatory activity of N-arylanthranilic acids: computational approach using refined Zagreb Indices. Croat Chem Acta 78(2):165–174Google Scholar
  3. Balaban AT (1982) Highly discriminating distance based topological indices. Chem Phys Lett 89:399–404CrossRefGoogle Scholar
  4. Cappucino JG, Sherman N (1999) Microbiology—a laboratory manual. Addison Wesley, Davis 263Google Scholar
  5. Chiyanzu I, Clarkson C, Smith PJ, Lehman J, Gut J, Rosenthal PJ, Chibale K (2005) Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorgan Med Chem 13:3249–3261CrossRefGoogle Scholar
  6. Cruz-Monteagudo M, Gonzalez-Diaz H, Aguero-Chapin G, Santana L, Borges F, Dominguez ER, Podda G, Uriarte E (2007) Computational chemistry development of a unified free energy Markov model for the distribution of 1300 chemicals to 38 different environmental or biological systems. J Comput Chem 28(11):1909–1923PubMedCrossRefGoogle Scholar
  7. Emami S, Falahati M, Banifafemi A, Shafiee A (2004) Stereoselective synthesis and antifungal activity of (Z)-trans-3-azolyl-2-methylchromanone oxime ethers. Bioorgan Med Chem 12:5881–5889CrossRefGoogle Scholar
  8. Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (1998) Vogel’s text book of practical organic chemistry. Addison Wesley, Davis, pp 34–35Google Scholar
  9. Giaginis C, Tsantili-Kakoulidou A, Theocharis S (2009) Quantitative structure activity relationship (QSAR) methodology in forensic toxicology: modeling post mortem redistribution of structurally diverse drugs using multivariate statistics. Forensic Sci Int 190:9–15PubMedCrossRefGoogle Scholar
  10. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276PubMedCrossRefGoogle Scholar
  11. Gonzalez-Diaz H, Prado–Prado FJ (2008) Unified QSAR and network-based computational chemistry approach to antimicrobials, part 1: multispecies activity models for antifungals. J Comput Chem 29(4):656–667PubMedCrossRefGoogle Scholar
  12. Gonzalez-Diaz H, Vilar S, Santana L, Uriarte E (2007) Medicinal chemistry and bioinformatics—current trends in drugs discovery with networks topological indices. Curr Top Med Chem 7(10):1015–1029PubMedCrossRefGoogle Scholar
  13. Hansch C, Fujita T (1964) p–σ–π Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626CrossRefGoogle Scholar
  14. Hansch C, Leo A, Unger SH, Kim KH, Nikaitani D, Lien EJ (1973) “Aromatic” substituent constants for structure–activity correlations. J Med Chem 16(11):1207–1216PubMedCrossRefGoogle Scholar
  15. Ivachtchenko AV, Frolov EB, Mitkin OD, Tkachenko SE, Okun IM, Khvat AV (2010) Synthesis and biological activity of 5-styryl and 5-phenethyl-substituted 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indoles. Bioorg Med Chem Lett 20:78–82PubMedCrossRefGoogle Scholar
  16. Jacquemard U, Dias N, Lansiaux A, Bailly C, Loge C, Robert JM, Lozach O, Meijer L, Meroura JY, Routiera S (2008) Synthesis of 3,5-bis(2-indolyl)pyridine and 3-[(2-indolyl)-5-phenyl]-pyridine derivatives as CDK inhibitors and cytotoxic agents. Bioorgan Med Chem 16:4932–4953CrossRefGoogle Scholar
  17. Judge V, Narasimhan B, Ahuja M, Sriram D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J (2012) Synthesis, antimycobacterial, antiviral, antimicrobial activity and QSAR studies of Isonicotinic acid-1-(substituted phenyl)-ethylidene/cycloheptylidene hydrazides. Med Chem Res 21(8):1935–1952CrossRefGoogle Scholar
  18. Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic Press, New YorkGoogle Scholar
  19. Kier LB, Hall LH (1999) The kappa indices for modeling molecular shape and flexibility. In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach Science Publishers, Amsterdam, The Netherlands, pp 455–489Google Scholar
  20. Kumar A, Narasimhan B, Kumar D (2007) Synthesis, antimicrobial, and QSAR studies of substituted benzamides. Bioorgan Med Chem 15:4113–4124CrossRefGoogle Scholar
  21. Kumar P, Narasimhan B, Sharma D, Judge V, Narang R (2009) Hansch analysis of substituted benzoic acid benzylidene/furan-2-yl-methylene hydrazides as antimicrobial agents. Eur J Med Chem 44:1853–1863PubMedCrossRefGoogle Scholar
  22. Kumar D, Judge V, Narang R, Sangwan S, Clercq ED, Balzarini J, Narasimhan B (2010) Benzylidene/2-chlorobenzylidene hydrazides: synthesis, antimicrobial activity, QSAR studies and antiviral evaluation. Eur J Med Chem 45:2806–2816PubMedCrossRefGoogle Scholar
  23. Lamotte Y, Martres P, Faucher N, Laroze A, Grillot D, Ancellin N, Saintillan Y, Beneton V, Gampe RT (2010) Synthesis and biological activities of novel indole derivatives as potent and selective PPARγ modulators. Bioorg Med Chem Lett 20:1399–1404PubMedCrossRefGoogle Scholar
  24. Laxmi SV, Rajitha B (2012) Synthesis and antimicrobial activity of newer indole semicarbazones. Med Chem Res 21(2):85–90CrossRefGoogle Scholar
  25. Lee C, Yao C, Huang S, Ko S, Tan YH, Lee-Chen G, Wang Y (2008) Novel 2-step synthetic indole compound 1,1,3-tri(3-indolyl)cyclohexane inhibits cancer cell growth in lung cancer cells and xenograft models. Cancer 113:815–825PubMedCrossRefGoogle Scholar
  26. Lee J, Attila C, Cirillo SLG, Cirillo JD, Wood TK (2009) Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb Biotechnol 2(1):75–90PubMedCrossRefGoogle Scholar
  27. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63PubMedCrossRefGoogle Scholar
  28. Narang R, Narasimhan B, Sharma S, Sriram D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J (2012) Synthesis, antimycobacterial, antiviral, antimicrobial activity and QSAR studies of nicotinic acid benzylidene hydrazide derivatives. Med Chem Res 21(8):1557–1576CrossRefGoogle Scholar
  29. Narasimhan B, Judge V, Narang R, Ohlan S, Ohlan R (2007) Quantitative structure–activity relationship studies for prediction of antimicrobial activity of synthesized 2,4-hexadienoic acid derivatives. Bioorg Med Chem Lett 17:5836–5845PubMedCrossRefGoogle Scholar
  30. Ozkay Y, Tunali Y, Karaca H, Isikdag I (2010) Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazones moiety. Eur J Med Chem 45:3293–3298PubMedCrossRefGoogle Scholar
  31. Ozturk A, Abdullah MI (2006) Toxicological effect of indole and its azo dye derivatives on some microorganisms under aerobic conditions. Sci Total Environ 358:137–142PubMedCrossRefGoogle Scholar
  32. Pharmacopoeia of India (2007) Controller of publications, Ministry of Health Department, Govt. of India, New Delhi, vol. I, p 37Google Scholar
  33. Prado-Prado FJ, Gonzalez-Diaz H, Vega OMDL, Ubeira FM, Chou KC (2008) Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for Input-Coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorgan. Med Chem 16(11):5871–5880CrossRefGoogle Scholar
  34. Radwan MAA, Ragab EA, Sabry NM, El-Shenawy SM (2007) Synthesis and biological evaluation of new 3-substituted indole derivatives as potential anti-inflammatory and analgesic agents. Bioorgan Med Chem 15:3832–3841CrossRefGoogle Scholar
  35. Randic M (1975) On characterization of molecular branching. J Am Chem Soc 97:6609–6615CrossRefGoogle Scholar
  36. Randic M (1993) Comparative regression analysis: regression based on a single descriptor. Croat Chem Acta 66:289–312Google Scholar
  37. Rodriguez-Arguelles MC, Lopez-Silva EC, Sanmartin J, Pelagatti P, Zani F (2005) Copper complexes of imidazole-2-, pyrrole-2- and indol-3-carbaldehyde thiosemicarbazones: inhibitory activity against fungi and bacteria. J Inorg Biochem 99:2231–2239PubMedCrossRefGoogle Scholar
  38. Strappaghetti G, Mastrini L, Lucacchini A, Giannaccini G, Betti L, Fabbrini L (2008) Synthesis and biological affinity of new imidazo- and indol-arylpiperazine derivatives: further validation of a pharmacophore model for α1-adrenoceptor antagonists. Bioorg Med Chem Lett 18:5140–5145PubMedCrossRefGoogle Scholar
  39. TSAR 3D Version 3.3, Oxford Molecular Limited, 2000Google Scholar
  40. Velankar AD, Quintini G, Prabhu A, Weber A, Hunaeus G, Voland B, Wuest M, Orjeda C, Harel D, Varghese S, Gore V, Patil M, Gayke D, Herdemann M, Heit I, Zaliani A (2010) Synthesis and biological evaluation of novel (4 or 5-aryl)pyrazolyl-indoles as inhibitors of interleukin-2 inducible T-cell kinase (ITK). Bioorgan Med Chem 18:4547–4559CrossRefGoogle Scholar
  41. Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Harsh Kumar
    • 1
  • Pradeep Kumar
    • 1
  • Balasubramanian Narasimhan
    • 1
    Email author
  • Kalavathy Ramasamy
    • 2
  • Vasudevan Mani
    • 3
  • Rakesh Kumar Mishra
    • 3
  • Abu Bakar Abdul Majeed
    • 3
  1. 1.Faculty of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
  2. 2.Collaborative Drug Discovery Research Group, Faculty of PharmacyUniversiti Teknologi MARA (UiTM)Bandar Puncak AlamMalaysia
  3. 3.Brain Research Laboratory, Faculty of PharmacyUniversiti Teknologi MARA (UiTM)Bandar Puncak AlamMalaysia

Personalised recommendations