Skip to main content
Log in

3D-QSAR study of tyrosine and propanoic acid derivatives as PPARα/γ dual agonists using CoMSIA

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The peroxisome proliferator-activated receptors (PPARs) have increasingly become attractive targets for developing novel therapeutics for Type 2 Diabetes. Three dimensional-quantitative structure–activity relationship approach has been applied to a series of α-substituted 3-phenylpropanoic acid and tyrosine derivatives, reported as PPARα/γ dual agonists. Comparative molecular similarity indices analysis has been employed in correlating pharmacological data available for single enantiomer at individual receptor subtype. Three models: PPARα, PPARγ and PPARdual-model, using sum of individual activities as dependent parameter, are developed with statistically significant r 2cv  > 0.5 and r 2ncv  > 0.9 and lower values of standard error of estimation. This information can be used to design and prediction of enantioselective novel PPAR agonists. Activities of two sets of designed new molecules have also been predicted using generated models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Chart 1

Similar content being viewed by others

References

  • Beckman AJ, Creager AM, Libby P (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. J Am Med Assoc 287:2570–2581

    Article  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Böhm M, Stürzebecher J, Klebe G (1999) Three-dimensional quantitative structure–activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J Med Chem 42:458–477

    Article  PubMed  Google Scholar 

  • Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135:798–800

    Article  PubMed  CAS  Google Scholar 

  • Clark M, Cramer RD, Van I, Opdenbosch N (1989) Validation of the general purpose Tripos 5.2 force field. J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  • Collins JL, Blanchard SG, Boswell GE, Charifson PS, Cobb JE, Henke BR, Hull-Ryde EA, Kazmierski WM, Lake DH, Leesnitzer LM, Lehmann J, Lenhard JM, Orband-Miller LA, Nunez YG, Parks DJ, Plunkett KD, Tong WQ (1998) N-(2-Benzoylphenyl)-l-tyrosine PPARγ agonists. 2. Structure–activity relationship and optimization of the phenyl alkyl ether moiety. J Med Chem 41:5037–5054

    Article  PubMed  CAS  Google Scholar 

  • Devasthale PV, Chen S, Jeon Y, Qu F, Shao C, Wang W, Zhang H, Cap M, Farrelly D, Golla R, Grover G, Harrity T, Ma Z, Moore L, Ren J, Seethala R, Cheng L, Sleph P, Sun W, Tieman A, Wetterau JR, Doweyko A, Chandrasena G, Chang SY, Humphreys WG, Sasseville VG, Biller SA, Ryono DE, Selan F, Hariharan N, Cheng PTW (2005) Design and synthesis of N-[(4-Methoxyphenoxy)carbonyl]-N-[[4-[2-(5-methyl-2-phenyl-4-oxazolyl) ethoxy] phenyl] methyl]glycine [Muraglitazar/BMS-298585], a novel peroxisome proliferator-Activated receptor α/γ dual agonist with efficacious glucose and lipid-lowering activities. J Med Chem 48:2248–2250

    Article  PubMed  CAS  Google Scholar 

  • Galiègue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P, Bouaboula M, Shire D, Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 231:54–61

    Article  Google Scholar 

  • Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 19:3181–3184

    Article  Google Scholar 

  • Gillies PS, Dunn CJ (2000) Pioglitazone. Drugs 60:333–343

    Article  PubMed  CAS  Google Scholar 

  • Hu E, Tontonoz P, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  PubMed  Google Scholar 

  • Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    Article  PubMed  CAS  Google Scholar 

  • Kargul J, Laurent JG (2006) Diabetes: new challenges for the control of disease globalisation. Int J Biochem Cell Biol 38:685–686

    Article  PubMed  CAS  Google Scholar 

  • Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405:421–424

    Article  PubMed  CAS  Google Scholar 

  • Khanna S, Sobhia ME, Bharatam PV (2005) Additivity of molecular fields: CoMFA study on dual activators of PPARα and PPARγ. J Med Chem 48:3015–3025

    Article  PubMed  CAS  Google Scholar 

  • Khanolkar AD, Palmer SL, Makriyannis A (2000) Molecular probes for the cannabinoid receptors. Chem Phys Lipids 108:37–42

    Article  PubMed  CAS  Google Scholar 

  • Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, Forman BM, Blumberg B, Ongt ES, Borgmeyer U, Mangelsdorft DJ, Umesono K, Evanso RM (1994) Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 91:7355–7359

    Article  PubMed  CAS  Google Scholar 

  • Lambert MH, Liu KG, Ayscue AH, Henke BR, Leesnitzer LM, Oliver WR, Plunket KD, Xu HE, Sternbach DD, Willson TM (2001) Synthesis and biological activity of l-tyrosine-based PPARγ agonists with reduced molecular weight, nuclear receptor discovery research. Bioorg Med Chem Lett 11:3111–3113

    Article  PubMed  Google Scholar 

  • Lebovitz H (2006) Diabetes: assessing the pipeline. Atheroscler Suppl 7:43–49

    Article  PubMed  Google Scholar 

  • Liu KG, Smith JS, Ayscue AH, Henke BR, Lambert MH, Leesnitzer LM, Plunket KD, Willson TM, Sternbach DD (2001) Identification of a series of oxadiazole substituted α-isopropoxy phenylpropanoic acids with activity on PPARα, PPARγ and PPARδ, nuclear receptor discovery research. Bioorg Med Chem Lett 11:2385–2388

    Article  PubMed  CAS  Google Scholar 

  • Mahindroo N, Peng Y, Lin C, Tan U, Prakash E, Lien T, Lu I, Lee H, Hsu JT, Chen X, Liao C, Lyu P, Chao Y, Wu S, Hsieh H (2006) Structural basis for the structure–activity relationships of peroxisome proliferator-activated receptor agonists. J Med Chem 49:6421–6424

    Article  PubMed  CAS  Google Scholar 

  • Malinowski JM, Bolesta S (2000) Rosiglitazone in the treatment of type 2 diabetes mellitus: a critical review. Clin Ther 22:1151–1167

    Article  PubMed  CAS  Google Scholar 

  • Miller AR, Etgen JG (2003) Novel peroxisome proliferator-activated receptor ligands for type 2 diabetes and the metabolic syndrome. Expert Opin Investig Drugs 12:1489–1500

    Article  PubMed  CAS  Google Scholar 

  • Mogensen JP, Jeppesen L, Bury PS, Pettersson I, Fleckner J, Nehlin J, Frederiksen KS, Albrektsen T, Din N, Mortensen SB, Svensson LA, Wassermann K, Wulff EM, Ynddal L, Sauerberg P (2003) Design and synthesis of novel PPARα/γ/δ triple activators using a known PPARα/γ/dual activator as structural template. Bioorg Med Chem Lett 13:257–260

    Article  PubMed  CAS  Google Scholar 

  • Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395:137–143

    Article  PubMed  CAS  Google Scholar 

  • Sauerberg P, Pettersson I, Jeppesen L, Bury PS, Mogensen JP, Wassermann K, Brand CL, Sturis J, Wldike HF, Fleckner J, Andersen AST, Mortensen SB, Svensson LA, Rasmussen HB, Lehmann SV, Polivka Z, Sindelar K, Panajotova V, Ynddal L, Wulff EM (2002) Novel tricyclic-α-alkyloxyphenylpropionic acids: dual PPARα/γ agonists with hypolipidemic and antidiabetic activity. J Med Chem 45:789–804

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Endo N, Rutledge SJ, Vogel R, Shinar D, Rodan GA (1992) Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. Mol Endocrinol 6:1634–1641

    Article  PubMed  CAS  Google Scholar 

  • Sharma R (2008) Novel dual-acting peroxisome proliferator-activated receptor alpha and gamma agonists. J Clin Diagn Res 2:659–667

    CAS  Google Scholar 

  • Sybyl 7.3 (2006) Tripos Inc. 1699 Hanley Road, St. Louis, MO 63144, USA

  • Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) PPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234

    Article  PubMed  CAS  Google Scholar 

  • Uppenberg J, Svensson C, Jaki M, Bertilsson G, Jendeberg L, Berkenstam A (1998) Crystal structure of the ligand binding domain of the human nuclear receptor PPARγ. J Biol Chem 273:31108–31112

    Article  PubMed  CAS  Google Scholar 

  • Wagman AS, Nuss JM (2001) Current therapies and emerging targets for the treatment of diabetes. Curr Pharm Des 7:417–450

    Article  PubMed  CAS  Google Scholar 

  • Willson TM, Brown PJ, Sternbach DD, Henke BR (2000) The PPARs: from orphan receptors to drug discovery. J Med Chem 43:527–550

    Article  PubMed  CAS  Google Scholar 

  • Xu HE, Lambert MH, Montana VG, Plunket GM, Moore LB, Collins JL, Oplinger JA, Kliewer SA, Gampe RT, McKee DD, Moore JT, Willson TM (2001) Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 98:13919–13924

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Rito CJ, Etgen GJ, Ardecky RJ, Bean JS, Bensch WR, Bosley JR, Broderick CL, Brooks DA, Dominianni SJ, Hahn PJ, Liu S, Mais DE, Rafizadeh CM, Ogilvie KM, Oldham BA, Peters M, Rungta DK, Shuker AJ, Stephenson GA, Tripp AE, Wilson SB, Winneroski LL, Zink R, Kauffman RF, McCarthy JR (2004) Design and synthesis of α-Aryloxy-α-methylhydrocinnamic acids: a novel class of dual peroxisome proliferator-activated receptor α/γ agonists. J Med Chem 47:2422–2425

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge the financial support from IndSwift Labs. Ltd. SAS Nagar Mohali for the ISLL-Punjabi University Collaborative Research, and providing the research fellowship to two of the authors VK and PG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman K. Verma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, R.K., Kumar, V., Ghosh, P. et al. 3D-QSAR study of tyrosine and propanoic acid derivatives as PPARα/γ dual agonists using CoMSIA. Med Chem Res 22, 287–302 (2013). https://doi.org/10.1007/s00044-012-0003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0003-4

Keywords

Navigation