Skip to main content

Molecular docking, QPLD, and ADME prediction studies on HIV-1 integrase leads

Abstract

HIV-1 integrase (IN) is an important drug target over the years with diverse therapeutic potential with the objective of designing new chemical entities with enhanced inhibitory potencies against HIV-1 IN. We performed molecular docking, quantum polarized ligand docking (QPLD), ADME screening, and PASS biological activity prediction studies on Raltegravir, Elvitegravir, and newly searched compounds of Cambridge crystallographic database. Best docking and QPLD scores of known and unknown searched compounds were compared using docking score, docking energy, and emodel energy. Moreover, correlation between docking score, docking energy with emodel energy yielded a statistically significant correlation coefficient. The searched compounds were also evaluated with ADME properties and biological activity prediction analysis. These compounds also show good pharmacokinetic properties under the acceptable range including antiviral biological activity prediction. Hence, these compounds could be employed to design ligands with enhanced inhibitory potencies and to predict the potencies of analogs to guide synthesis/or prepare synthetic analogs for second generation drug development against HIV-1 IN.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388

    Article  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  PubMed  CAS  Google Scholar 

  • Bujacz G, Jaskólski M, Alexandratos J, Wlodawer A, Merkel G, Katz RA, Skalka AM (1995) High-resolution structure of the catalytic domain of avian sarcoma virus integrase. J Mol Biol 253:333–346

    Article  PubMed  CAS  Google Scholar 

  • Cai M, Zheng R, Caffrey M, Craigie R, Clore GM, Gronenborn AM (1997) Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat Struct Biol 4:567–577

    Article  PubMed  CAS  Google Scholar 

  • Cho AE, Victor G, Bruce JB, Richard F (2005) Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 26:915–931

    Article  PubMed  CAS  Google Scholar 

  • da Silva CHTDP, da Silva VB, Resende J, Rodrigues PF, Bononi FC, Benevenuto CG, Taft CA (2010) Computer-aided drug design and ADMET predictions for identification and evaluation of novel potential farnesyltransferase inhibitors in cancer therapy. J Mol Graph Model 28:513–523

    Article  PubMed  Google Scholar 

  • Deng J, Lee KW, Sanchez T, Cui M, Neamati N, Briggs JM (2005) Dynamic receptor-based pharmacophore model development and its application in designing novel HIV-1 integrase inhibitors. J Med Chem 48:1496–1505

    Article  PubMed  CAS  Google Scholar 

  • Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR (1994) Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266:1981–1986

    Article  PubMed  CAS  Google Scholar 

  • Eijkelenboom AP, Lutzke RA, Boelens R, Plasterk RH, Kaptein R, Hard K (1995) The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nat Struct Biol 2:807–810

    Article  PubMed  CAS  Google Scholar 

  • Eriketi ZL, Zeinalipour-Yazdi CD, Christofides T, Kostrikis LG (2009) Analysis of binding parameters of HIV-1 integrase inhibitors: correlates of drug inhibition and resistance. Bioorg Med Chem 17(13):4806–4818

    Article  Google Scholar 

  • Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  PubMed  CAS  Google Scholar 

  • Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196

    Article  PubMed  CAS  Google Scholar 

  • Fukunishi Y (2009) Structure-based drug screening and ligand-based drug screening with machine learning. Comb Chem High Throughput Screen 12(4):397–408

    Article  PubMed  CAS  Google Scholar 

  • Georgia B, McGaughey GB, Gagne M, Rappe AK (1998) π-Stacking interactions alive and well in proteins. J Biol Chem 273(25):15458–15463

    Article  Google Scholar 

  • Glide (2010) Version 5.6, Schrödinger, LLC, New York

  • Grinsztejn B, Nguyen BY, Katlama C, Gatell JM, Lazzarin A, Vittecoq D, Gonzalez CJ, Chen J, Harvey CM, Isaacs RD (2007) Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet 369:1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  PubMed  CAS  Google Scholar 

  • Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (2010a) Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464(7286):232–236

    Article  PubMed  CAS  Google Scholar 

  • Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P (2010b) Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci USA 107(46):20057–20062

    Article  PubMed  CAS  Google Scholar 

  • Hayes MJ, Stein M, Weiser J (2004) Accurate calculations of ligand binding free energies. J Phys Chem A 108:3572–3580

    Article  CAS  Google Scholar 

  • Jones ED, Vandegraaff N, Le G, Choi N, Issa W, Macfarlane K, Thienthong N, Winfield LJ, Coates JA, Lu L, Li X, Feng X, Yu C, Rhodes DI, Deadman JJ (2010) Design of a series of bicyclic HIV-1 integrase inhibitors. Part 1: selection of the scaffold. Bioorg Med Chem Lett 20:5913–5917

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann GR, Cooper DA (2000) Antiretroviral therapy of HIV-1 infection: established treatment strategies and new therapeutic options. Curr Opin Microbiol 3:508–514

    Article  PubMed  CAS  Google Scholar 

  • Khan E, Mack JP, Katz RA, Kulkosky J, Skalka AM (1991) Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res 19:851–860

    Article  PubMed  CAS  Google Scholar 

  • Kroemer RT, Vulpetti A, McDonald JJ, Rohrer DC, Trosset JY, Giordanetto F, Cotesta S, McMartin C, Kihlén M, Stouten PF (2004) Assessment of docking poses: interactions-based accuracy classification (IBAC) versus crystal structure deviations. J Chem Inf Comput Sci 44(3):871–881

    Article  PubMed  CAS  Google Scholar 

  • LaFemina RL, Schneider CL, Robbins HL, Callahan PL, LeGrow K, Roth E, Schleif WA, Emini EA (1992) Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells. J Virol 66:7414–7419

    PubMed  CAS  Google Scholar 

  • Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16:747–748

    Article  PubMed  CAS  Google Scholar 

  • Lee SP, Han MK (1996) Zinc stimulates Mg2+-dependent 3′-processing activity of human immunodeficiency virus type 1 integrase in vitro. Biochemistry 35:3837–3844

    Article  PubMed  CAS  Google Scholar 

  • Lee SP, Xiao J, Knutson JR, Lewis MS, Han MK (1997) Zn2+ promotes the self-association of human immunodeficiency virus type-1 integrase in vitro. Biochemistry 36:173–180

    Article  PubMed  CAS  Google Scholar 

  • Leroy D, Kajava AV, Frei C, Gasser SM (2001) Analysis of etoposide binding to subdomains of human DNA topoisomerase II alpha in the absence of DNA. Biochemistry 40:1624–1634

    Article  PubMed  CAS  Google Scholar 

  • LigPrep (2010) Version 2.4, Schrödinger, LLC, New York

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  PubMed  CAS  Google Scholar 

  • Lodi PJ, Ernst JA, Kuszewski J, Hickman AB, Engelman A, Robert C, Clore GM, Gronenborn AM (1995) Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34:9826–9833

    Article  PubMed  CAS  Google Scholar 

  • Onodera K, Satou K, Hirota H (2007) Evaluations of molecular docking programs for virtual screening. J Chem Inf Model 47(4):1609–1618

    Article  PubMed  CAS  Google Scholar 

  • Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338:853–860

    Article  PubMed  Google Scholar 

  • Pommier Y, Johnson AA, Marchand C (2005) Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov 4:236–248

    Article  PubMed  CAS  Google Scholar 

  • Poroikov VV, Filimonov DA, Ihlenfeldt WD, Gloriozova TA, Lagunin AA, Borodina YV, Stepanchikova AV, Nicklaus MC (2002) PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci 43:228–236

    Google Scholar 

  • QikProp (2010) Version 3.3, Schrödinger, LLC, New York

  • QPLD (2010) Schrödinger Suite, QM-Polarized Ligand Docking protocol; Glide (2010) version 5.6, Jaguar (2010) version 7.7, QSite (2010) version 5.6, Schrödinger, LLC, New York

  • Sato M, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, Kawakami H, Matsuzaki Y, Watanabe W, Yamataka K, Ikeda S, Kodama E, Matsuoka M, Shinkai H (2006) Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem 49(5):1506–1508

    Article  PubMed  CAS  Google Scholar 

  • Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K (2008) Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol 82:764–774

    Article  PubMed  CAS  Google Scholar 

  • Sinnokrot MO, Valeev EF, Sherrill CD (2002) Estimates of the ab initio limit for pi–pi interactions: the benzene dimer. J Am Chem Soc 124(36):10887–10893

    Article  PubMed  CAS  Google Scholar 

  • Smith PA, Sorich MJ, Low LSC, McKinnon RA, Miners JO (2004) Towards integrated ADME prediction: past, present and future directions for modelling metabolism by UDP-glucuronosyltransferases. J Mol Graph Model 22:507–517

    Article  PubMed  CAS  Google Scholar 

  • Summa V, Petrocchi A, Bonelli F, Crescenzi B, Donghi M, Ferrara M, Fiore F, Gardelli C, Gonzalez Paz O, Hazuda DJ, Jones P, Kinzel O, Laufer R, Monteagudo E, Muraglia E, Nizi E, Orvieto F, Pace P, Pescatore G, Scarpelli R, Stillmock K, Witmer MV, Rowley M (2008) Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem 51(18):5843–5855

    Article  PubMed  CAS  Google Scholar 

  • Talele TT, McLaughlin ML (2008) Molecular docking/dynamics studies of Aurora A kinase inhibitors. J Mol Graph Model 26(8):1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Brady L (1997) HIV integrase: a target for AIDS therapeutics. Trends Biotechnol 15:167–172

    Article  PubMed  CAS  Google Scholar 

  • Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, Cherepanov P (2009) Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res 37(1):243–255

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633

    Article  PubMed  CAS  Google Scholar 

  • Zheng R, Jenkins TM, Craigie R (1996) Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc Natl Acad Sci USA 93:13659–13964

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors like to thank Department of Bioinformatics, Alagappa University, Karaikudi, for the support and facility provided for this study. The authors thank to anonymous referee for the valuable suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Singh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tripathi, S.K., Selvaraj, C., Singh, S.K. et al. Molecular docking, QPLD, and ADME prediction studies on HIV-1 integrase leads. Med Chem Res 21, 4239–4251 (2012). https://doi.org/10.1007/s00044-011-9940-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9940-6

Keywords

  • HIV-1 integrase
  • Docking
  • ADME
  • QM/MM
  • QPLD
  • CSD