Abstract
HIV-1 integrase (IN) is an important drug target over the years with diverse therapeutic potential with the objective of designing new chemical entities with enhanced inhibitory potencies against HIV-1 IN. We performed molecular docking, quantum polarized ligand docking (QPLD), ADME screening, and PASS biological activity prediction studies on Raltegravir, Elvitegravir, and newly searched compounds of Cambridge crystallographic database. Best docking and QPLD scores of known and unknown searched compounds were compared using docking score, docking energy, and emodel energy. Moreover, correlation between docking score, docking energy with emodel energy yielded a statistically significant correlation coefficient. The searched compounds were also evaluated with ADME properties and biological activity prediction analysis. These compounds also show good pharmacokinetic properties under the acceptable range including antiviral biological activity prediction. Hence, these compounds could be employed to design ligands with enhanced inhibitory potencies and to predict the potencies of analogs to guide synthesis/or prepare synthetic analogs for second generation drug development against HIV-1 IN.
This is a preview of subscription content, access via your institution.







References
Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388
Berman HM, Westbrook J, Feng Z, Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242
Bujacz G, Jaskólski M, Alexandratos J, Wlodawer A, Merkel G, Katz RA, Skalka AM (1995) High-resolution structure of the catalytic domain of avian sarcoma virus integrase. J Mol Biol 253:333–346
Cai M, Zheng R, Caffrey M, Craigie R, Clore GM, Gronenborn AM (1997) Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat Struct Biol 4:567–577
Cho AE, Victor G, Bruce JB, Richard F (2005) Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 26:915–931
da Silva CHTDP, da Silva VB, Resende J, Rodrigues PF, Bononi FC, Benevenuto CG, Taft CA (2010) Computer-aided drug design and ADMET predictions for identification and evaluation of novel potential farnesyltransferase inhibitors in cancer therapy. J Mol Graph Model 28:513–523
Deng J, Lee KW, Sanchez T, Cui M, Neamati N, Briggs JM (2005) Dynamic receptor-based pharmacophore model development and its application in designing novel HIV-1 integrase inhibitors. J Med Chem 48:1496–1505
Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR (1994) Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266:1981–1986
Eijkelenboom AP, Lutzke RA, Boelens R, Plasterk RH, Kaptein R, Hard K (1995) The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nat Struct Biol 2:807–810
Eriketi ZL, Zeinalipour-Yazdi CD, Christofides T, Kostrikis LG (2009) Analysis of binding parameters of HIV-1 integrase inhibitors: correlates of drug inhibition and resistance. Bioorg Med Chem 17(13):4806–4818
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749
Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196
Fukunishi Y (2009) Structure-based drug screening and ligand-based drug screening with machine learning. Comb Chem High Throughput Screen 12(4):397–408
Georgia B, McGaughey GB, Gagne M, Rappe AK (1998) π-Stacking interactions alive and well in proteins. J Biol Chem 273(25):15458–15463
Glide (2010) Version 5.6, Schrödinger, LLC, New York
Grinsztejn B, Nguyen BY, Katlama C, Gatell JM, Lazzarin A, Vittecoq D, Gonzalez CJ, Chen J, Harvey CM, Isaacs RD (2007) Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet 369:1261–1269
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759
Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (2010a) Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464(7286):232–236
Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P (2010b) Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci USA 107(46):20057–20062
Hayes MJ, Stein M, Weiser J (2004) Accurate calculations of ligand binding free energies. J Phys Chem A 108:3572–3580
Jones ED, Vandegraaff N, Le G, Choi N, Issa W, Macfarlane K, Thienthong N, Winfield LJ, Coates JA, Lu L, Li X, Feng X, Yu C, Rhodes DI, Deadman JJ (2010) Design of a series of bicyclic HIV-1 integrase inhibitors. Part 1: selection of the scaffold. Bioorg Med Chem Lett 20:5913–5917
Kaufmann GR, Cooper DA (2000) Antiretroviral therapy of HIV-1 infection: established treatment strategies and new therapeutic options. Curr Opin Microbiol 3:508–514
Khan E, Mack JP, Katz RA, Kulkosky J, Skalka AM (1991) Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res 19:851–860
Kroemer RT, Vulpetti A, McDonald JJ, Rohrer DC, Trosset JY, Giordanetto F, Cotesta S, McMartin C, Kihlén M, Stouten PF (2004) Assessment of docking poses: interactions-based accuracy classification (IBAC) versus crystal structure deviations. J Chem Inf Comput Sci 44(3):871–881
LaFemina RL, Schneider CL, Robbins HL, Callahan PL, LeGrow K, Roth E, Schleif WA, Emini EA (1992) Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells. J Virol 66:7414–7419
Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16:747–748
Lee SP, Han MK (1996) Zinc stimulates Mg2+-dependent 3′-processing activity of human immunodeficiency virus type 1 integrase in vitro. Biochemistry 35:3837–3844
Lee SP, Xiao J, Knutson JR, Lewis MS, Han MK (1997) Zn2+ promotes the self-association of human immunodeficiency virus type-1 integrase in vitro. Biochemistry 36:173–180
Leroy D, Kajava AV, Frei C, Gasser SM (2001) Analysis of etoposide binding to subdomains of human DNA topoisomerase II alpha in the absence of DNA. Biochemistry 40:1624–1634
LigPrep (2010) Version 2.4, Schrödinger, LLC, New York
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26
Lodi PJ, Ernst JA, Kuszewski J, Hickman AB, Engelman A, Robert C, Clore GM, Gronenborn AM (1995) Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34:9826–9833
Onodera K, Satou K, Hirota H (2007) Evaluations of molecular docking programs for virtual screening. J Chem Inf Model 47(4):1609–1618
Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338:853–860
Pommier Y, Johnson AA, Marchand C (2005) Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov 4:236–248
Poroikov VV, Filimonov DA, Ihlenfeldt WD, Gloriozova TA, Lagunin AA, Borodina YV, Stepanchikova AV, Nicklaus MC (2002) PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci 43:228–236
QikProp (2010) Version 3.3, Schrödinger, LLC, New York
QPLD (2010) Schrödinger Suite, QM-Polarized Ligand Docking protocol; Glide (2010) version 5.6, Jaguar (2010) version 7.7, QSite (2010) version 5.6, Schrödinger, LLC, New York
Sato M, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, Kawakami H, Matsuzaki Y, Watanabe W, Yamataka K, Ikeda S, Kodama E, Matsuoka M, Shinkai H (2006) Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem 49(5):1506–1508
Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K (2008) Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol 82:764–774
Sinnokrot MO, Valeev EF, Sherrill CD (2002) Estimates of the ab initio limit for pi–pi interactions: the benzene dimer. J Am Chem Soc 124(36):10887–10893
Smith PA, Sorich MJ, Low LSC, McKinnon RA, Miners JO (2004) Towards integrated ADME prediction: past, present and future directions for modelling metabolism by UDP-glucuronosyltransferases. J Mol Graph Model 22:507–517
Summa V, Petrocchi A, Bonelli F, Crescenzi B, Donghi M, Ferrara M, Fiore F, Gardelli C, Gonzalez Paz O, Hazuda DJ, Jones P, Kinzel O, Laufer R, Monteagudo E, Muraglia E, Nizi E, Orvieto F, Pace P, Pescatore G, Scarpelli R, Stillmock K, Witmer MV, Rowley M (2008) Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem 51(18):5843–5855
Talele TT, McLaughlin ML (2008) Molecular docking/dynamics studies of Aurora A kinase inhibitors. J Mol Graph Model 26(8):1213–1222
Thomas M, Brady L (1997) HIV integrase: a target for AIDS therapeutics. Trends Biotechnol 15:167–172
Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, Cherepanov P (2009) Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res 37(1):243–255
Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633
Zheng R, Jenkins TM, Craigie R (1996) Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc Natl Acad Sci USA 93:13659–13964
Acknowledgments
The authors like to thank Department of Bioinformatics, Alagappa University, Karaikudi, for the support and facility provided for this study. The authors thank to anonymous referee for the valuable suggestion.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tripathi, S.K., Selvaraj, C., Singh, S.K. et al. Molecular docking, QPLD, and ADME prediction studies on HIV-1 integrase leads. Med Chem Res 21, 4239–4251 (2012). https://doi.org/10.1007/s00044-011-9940-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00044-011-9940-6
Keywords
- HIV-1 integrase
- Docking
- ADME
- QM/MM
- QPLD
- CSD