Skip to main content

Synthesis of new potential anticancer agents based on 4-thiazolidinone and oleanane scaffolds

Abstract

The synthesis and evaluation of the anticancer activity of new acylated oximes derivatives of oleanolic acid with 4-thiazolidinone-3(5)-carboxylic acid moieties were described. Newly synthesized compounds were elucidated on the basis of elemental analyses and spectral data (IR, 1H, and 13C NMR). Anticancer activity of the tested compounds has been evaluated in vitro at National Cancer Institute (NCI) in which some structure activity relationships (SARs) were discussed. Among the tested compounds, 3-[(2,4-thiazolidinedione-5-ylidene)-carboxyimino]olean-12-en-28-oic acid methyl ester (IVm) was superior to other related compounds with mean values of pGI50 = 5.51/5.57, pTGI = 5.09/5.13, and pLC50 = 4.62/4.64, low toxicity and moderate activity level in vivo hollow fiber assay.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2

References

  • Bodor N (1984) Novel approaches to the design of safer drugs: soft drugs and chemical deliver systems. In: Testa B (ed) Advances in drug research. Academic Press, Orlando, pp 255–331

    Google Scholar 

  • Boyd MR (1997) In: Teicher BA (ed) Cancer drug discovery and development. Humana Press, Totowa, pp 23–43

  • Boyd MR, Paull KD (1995) Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev Res 34:91–109

    Article  CAS  Google Scholar 

  • Brier S, Lemaire D, Debonis S, Forest E, Kozielski F (2004) Identification of the protein binding region of S-trityl-l-cysteine, a new potent inhibitor of the mitotic kinesin Eg5. Biochem 43:13072–13082

    Article  CAS  Google Scholar 

  • Chen J, Liu J, Zhang L, Wu G, Hua W, Wu X, Suna H (2006) Pentacyclic triterpenes. Part 3: synthesis and biological evaluation of oleanolic acid derivatives as novel inhibitors of glycogen phosphorylase. Bioorg Med Chem Lett 16:2915–2919

    PubMed  Article  CAS  Google Scholar 

  • Cichewicz RH, Kouzi SA (2004) Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev 24:90–114

    PubMed  Article  CAS  Google Scholar 

  • Couch RD, Browning RG, Honda T, Gribble GW, Wright DL, Sporn MB, Anderson AC (2005) Studies on the reactivity of CDDO, a promising new chemopreventive and chemotherapeutic agent: implications for a molecular mechanism of action. Bioorg Med Chem Lett 15:2215–2219

    PubMed  Article  CAS  Google Scholar 

  • Cutshall NS, O’Day C, Prezhdo M (2005) Rhodanine derivatives as inhibitors of JSP-1. Bioorg Med Chem Lett 15:3374–3379

    PubMed  Article  CAS  Google Scholar 

  • Deghengni R, Daneault G (1960) Orotic acid and its analogues: part II. On the alkaline rearrangement of 5-carboxymethylidenehydantoin. Can J Chem 38:1255–1260

    Article  Google Scholar 

  • Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J (2001) Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xl. Nat Cell Biol 3:173–182

    PubMed  Article  CAS  Google Scholar 

  • Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N, Williams C, Risingsong R, Honda T, Gribble GW, Sporn MB, Talalay P (2005) Extremely potent triterpenoid inducers of the phase 2 response: Correlations of protection against oxidant and inflammatory stress. PNAS 102:4584–4589

    PubMed  Article  CAS  Google Scholar 

  • Finlay HJ, Honda T, Gribble GW (2002) Synthesis of novel [3, 2-b]indole fused oleanolic acids as potential inhibitors of cell proliferation. ARKIVOC XII:38–46

    Google Scholar 

  • Han SK, Ko YI, Park SJ, Jin IJ, Kim YM (1997) Oleanolic acid and ursolic acid stabilize liposomal membranes. Lipids 32:769–773

    PubMed  Article  CAS  Google Scholar 

  • Havrylyuk D, Zimenkovsky B, Vasylenko O, Zaprutko L, Gzella A, Lesyk R (2009) Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur J Med Chem 44:1396–1404

    PubMed  Article  CAS  Google Scholar 

  • Hollingshead MG, Alley MC, Camalier RF, Abbott BJ, Mayo JG, Malspeis L, Grever MR (1995) In vivo cultivation of tumor cells in hollow fibers. Life Sci 57:131–141

    PubMed  Article  CAS  Google Scholar 

  • Honda T, Gribble GW, Suh N, Finlay HJ, Rounds BV, Bore L, Favaloro FG Jr, Wang Y, Sporn MB (2000a) Novel synthetic oleanane and ursane triterpenoids with various enone functionalities in ring A as inhibitors of nitric oxide production in mouse macrophages. J Med Chem 43:1866–1877

    PubMed  Article  CAS  Google Scholar 

  • Honda T, Rounds BV, Bore L, Finlay HJ, Favaloro FG Jr, Suh N, Wang Y, Sporn MB, Gribble GW (2000b) Synthetic oleanane and ursane triterpenoids with modified rings A and C: a series of highly active inhibitors of nitric oxide production in mouse macrophages. J Med Chem 43:4233–4246

    PubMed  Article  CAS  Google Scholar 

  • Kaminskyy DV, Lesyk RB (2010) Structure-anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives. Biopolym Cell 26:136–145

    CAS  Google Scholar 

  • Kaminskyy D, Zimenkovsky B, Lesyk R (2009) Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives. Eur J Med Chem 44:3627–3636

    PubMed  Article  CAS  Google Scholar 

  • Konoki MHK, Tachibana K (1996) Cholesterol-independent membrane disruption caused by triterpenoid saponins. Biochim Biophys Acta 1299:252–258

    PubMed  Article  Google Scholar 

  • Lee J, Kim J, Koh JS, Chung HH, Kim KH (2006) Hydantoin derivatives as non-peptidic inhibitors of Ras farnesyl transferase. Bioorg Med Chem Lett 16:1954–1956

    PubMed  Article  CAS  Google Scholar 

  • Lesyk RB, Zimenkovsky BS (2004) 4-Thiazolidones: centenarian history, current status and perspectives for modern organic and medicinal chemistry. Curr Org Chem 8:1547–1578

    Article  CAS  Google Scholar 

  • Lesyk R, Zimenkovsky B, Troc’ko N, Kazmirchuk G (2002) Synthesis of 5-arylidene-2,4-thiazolidin-3-yl alkanoic acids. Annal UMCS Sec DDD 15:39–45

    Google Scholar 

  • Lesyk R, Zimenkovsky B, Kaminskyy D, Holota S, Atamanyuk D, Havrylyuk D, Nektegaev I, Kazmirchuk G, Subtel’na I, Roman O, Kryshchyshyn A, Khyluk D (2006) Anticancer potential of 4-azolidones and related heterocycles. Annal UMCS Sec DDD 19:107–110

    Google Scholar 

  • Lewis KG, Tucker DJ (1983) The separation of substituted olean-12-en-28-oic acid from the corresponding Urs-12-en-28-oic acid isomers. Aust J Chem 36:2297–2305

    Article  CAS  Google Scholar 

  • Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7:357–369

    PubMed  Article  CAS  Google Scholar 

  • Liu J (2005) Oleanolic acid and ursolic acid: research perspectives. J Ethnopharmacol 100:92–94

    PubMed  Article  CAS  Google Scholar 

  • Ma C, Nakamura N, Hattori M (2000) Chemical modification of oleanene type triterpenes and their inhibitor activity against HIV-1 protease dimerization. Chem Pharm Bull (Tokoyo) 48:1681–1688

    Article  CAS  Google Scholar 

  • Ma C, Nakamura N, Hattori M, Kawahata T, Otake T (2002) Inhibitory Effects of triterpene–azidothymidine conjugates on proliferation of human immunodeficiency virus type 1 and its protease. Chem Pharm Bull (Tokoyo) 50:877–880

    Article  CAS  Google Scholar 

  • Mallarno JP, Pilling GM, Wetzel JR, Kowalczyk PJ, Bell MR, Kullnig RK, Batzold FH, Juniewicz PE, Winneker RC, Luss HR (1992) Anti-androgenic steroidal sulfonyl heterocycles. Utility of electrostatic complementarity in defining bioisosteric sulfonyl heterocycles. J Med Chem 35:1663–1670

    Article  Google Scholar 

  • Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Nat Cancer Inst 83:757–766

    PubMed  Article  CAS  Google Scholar 

  • Nair KG, Moayeri H, Mittelman A (1980) A phase II study of fluorodopan in the treatment of advanced colorectal cancer. Cancer Treat Rep 64:697–699

    PubMed  CAS  Google Scholar 

  • Plowman J, Dykes DJ, Hollingshead M, Simpson-Herren L, Alley MC (1997) Human tumor xenograft models in NCI drug development. In: Teicher B (ed) Anticancer drug development guide: preclinical screening, clinical trials, and approval. Humana Press, Totowa, pp 101–125

    Google Scholar 

  • Popov-Pergal K, Rancic M, Pergal M, Bogdanovic G, Kojic V, Djokovic D (2006) Synthesis and biological activity evaluation of new functionally substituted 5-arylidene-2,4-dioxotetrahydro-1,3-thiazoles. J Serb Chem Soc 71:61–866

    Article  Google Scholar 

  • Shirane N, Hashimoto Y, Ueda K, Takenaka H, Katoh K (1996) Ring-A cleavage of 3-oxo-olean-12-en-28-oic acid by the fungus chaetomium longirostre. Phytochem 43:99–104

    Article  CAS  Google Scholar 

  • Shoemaker RH (2006) The NCI 60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823

    PubMed  Article  CAS  Google Scholar 

  • Simonsen J, Rossk WCI (1957) The terpenes. Volume 5: the triterpenes and their derivatives. University Press, Cambridge

    Google Scholar 

  • Subtel’na I, Atamanyuk D, Szymańska E, Kieć-Kononowicz K, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R (2010) Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anticancer activity. Bioorg Med Chem 18:5090–5102

    PubMed  Article  Google Scholar 

  • Teng X, Degterev A, Jagtap P, Xing X, Choi S, Denu R, Yuan J, Cuny GD (2005) Structure-activity relationship study of novel necroptosis inhibitors. Bioorg Med Chem Lett 15:5039–5044

    PubMed  Article  CAS  Google Scholar 

  • Yakubych VY, Fedirko YaM (1983) Synthesis and properties of rhodanines synthesized base on aspartic acid. Farmacevtychnyj Zhurn (Kyiv) 5:58–60 In Ukrainian

    Google Scholar 

  • Yasue M, Sakakibara J, Kaiya T (1974) Syntheses of nitrogen-containing triterpenes. III Derivatives of betulinic acid and oleanolic acid. J Pharm Soc Jpn 94:1468–1474

    CAS  Google Scholar 

  • Zaharevitz DW, Holbeck SL, Bowerman C, Svetlik PA (2002) COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition. J Mol Graphics Model 20:297–303

    Article  CAS  Google Scholar 

  • Zaprutko L, Partyka D, Bednarczyk-Cwynar B (2004) Triterpenoids. Part 21. Olenolic acid azaderivatives as perculatenous transport promoters. Bioorg Med Chem Lett 14:4723–4726

    PubMed  Article  CAS  Google Scholar 

  • Zimenkovsky B, Kutsyk R, Lesyk R, Matiychuk V, Obushak N, Klyufinska T (2006) Synthesis and antimicrobial activity of 2,4-dioxothiazolidine-5-acetic acid amides. Pharm Chem J 40:303–306

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to Dr. V.L. Narayanan from Drug Synthesis and Chemistry Branch, National Cancer Institute, Bethesda, MD, USA, for evaluation of anticancer activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Lesyk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaminskyy, D., Bednarczyk-Cwynar, B., Vasylenko, O. et al. Synthesis of new potential anticancer agents based on 4-thiazolidinone and oleanane scaffolds. Med Chem Res 21, 3568–3580 (2012). https://doi.org/10.1007/s00044-011-9893-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9893-9

Keywords

  • 4-Thiazolidinone-3(5)-carboxylic acids
  • 3-Hydroxyimino-oleananes
  • Anticancer activity