Medicinal Chemistry Research

, Volume 21, Issue 6, pp 937–943 | Cite as

Protein–polysaccharides of Trametes versicolor: production and biological activities

  • José M. Santos Arteiro
  • M. Rosário Martins
  • Cátia Salvador
  • M. Fátima Candeias
  • Amin Karmali
  • A. Teresa CaldeiraEmail author
Original Research


Extracellular- (E-PPS) and intracellular-protein–polysaccharides (I-PPS) complexes were produced by Trametes versicolor in submerged cultures with different carbon sources. The highest extracellular-(EPS) and intracellular-polysaccharide (IPS) concentration in the complexes was obtained with tomato pomace culture. DPPH radical scavenging for E-PPS and I-PPS produced by liter of culture was equivallent to 2.115 ± 0.227 and 1.374 ± 0.364 g of ascorbic acid, respectively. These complexes showed a protector effect in the oxidation of erythrocyte membranes and had ability to inhibit the hemolysis and methemoglobin synthesis in stressed erythrocytes. These results suggest that extracellular- and intracellular- polysaccharides produced are important bioactive compounds with medicinal potential.


Protein–polysaccharides Trametes versicolor Submerged fermentation Edible mushrooms Antioxidant properties 


  1. Barreca D, Laganà G, Tellone E, Ficarra S, Leuzzi U, Galtieri A, Belloco E (2009) Influences of flavonoids on erythrocyte membrane and metabolic implication through anionic exchange modulation. J Membrane Biol 230:163–171CrossRefGoogle Scholar
  2. Barros L, Falcão S, Baptista P, Freire C, Vilas-Boas M, Ferreira ICFR (2008) Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem 111:61–66CrossRefGoogle Scholar
  3. Braun S, Vecht-Lifshitz SE (1991) Mycelial morphology and metabolite production. Trend Biotechnol 9:63–68Google Scholar
  4. Chen Y, Xie MY, Nie SP, Li C, Wang YX (2008) Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem 107:231–241CrossRefGoogle Scholar
  5. Cui J, Chisti Y (2003) Polysaccharopeptides of Coriolus versicolor physiological activity, uses, and production. Biotechnol Adv 21:109–122PubMedCrossRefGoogle Scholar
  6. Cui J, Goh K, Archer R, Singh H (2007) Characterisation and bioactivity of protein-bound polysaccharides from submerged-culture fermentation of Coriolus versicolor Wr-74 and ATCC-20545 strains. J Ind Microbiol Biotechnol 34:393–402PubMedCrossRefGoogle Scholar
  7. Dubois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  8. Gern R, Wisbeck E, Rampinelli J, Ninow J, Furlan S (2008) Alternative medium for production of Pleurotus ostreatus biomass and potential antitumor polysaccharides. Bioresour Technol 99:76–82PubMedCrossRefGoogle Scholar
  9. Jedinak A, Sliva D (2008) Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway. Int J Oncol 33:1307–1313PubMedGoogle Scholar
  10. Jiang B, Zhang H, Liu C, Wang Y, Fan S (2010) Extraction of water-soluble polysaccharide and the antioxidant activity from GinKgo biloba leaves. Med Chem Res 19:262–270CrossRefGoogle Scholar
  11. Kim S, Hwang H, Park J, Cho Y, Song C, Yun J (2002) Mycelial growth and exo-biopolymer production by submerged culture of various edible mushrooms under different media. Lett Appl Microbiol 34:56–61PubMedCrossRefGoogle Scholar
  12. Lee C, Yang X, Wan J (2006) The culture duration affects the immunomodulatory and anticancer effect of polysaccharopeptide derived from Coriolus versicolor. Enzyme Microb Technol 38:14–21CrossRefGoogle Scholar
  13. Li S, Wang D, Tian W, Wang X, Zhao J, Liu Z, Chen R (2008) Characterization and anti-tumor activity of a polysaccharide from Hedysarum polybotrys Hand-Mazz. Carbohydr Polym 73:344–350CrossRefGoogle Scholar
  14. Lin E, Sung S (2006) Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. Int J Food Microbiol 108:182–187PubMedCrossRefGoogle Scholar
  15. Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the folin phenol reagent. J Biochem 193:265–275Google Scholar
  16. Manzoni M, Rollini M (2001) Isolation and characterization of the exopolisaccharide produced by Daedalia quercina. Biotechnol Lett 23:1491–1497CrossRefGoogle Scholar
  17. Marchall KC, Alexander M (1960) Growth characteristics of fungi and ascomycetes. J Bacteriol 80:412–416Google Scholar
  18. Niki E, Komuro E, Takahashi M, Urano S, Ito E, Terao K (1988) Oxidative hemolysis of erythrocytes and its inhibition by free radical scavengers. J Biol Chem 263:19809–19814PubMedGoogle Scholar
  19. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelia processes. Biotechnol Adv 22:189–259PubMedCrossRefGoogle Scholar
  20. Rau U (1997) Biosynthese, produktion und eigenschaften von extrazellulären Pilz-glucanem. Shaker, AachenGoogle Scholar
  21. Rau U, Kuenz A, Wray V, Nimtz M, Wrenger J, Cicek H (2009) Production and stuctural analysis of the polysaccharide secreted by Trametes (Coriolus) versicolor ATCC 200801. Appl Microbiol Biotechnol 81:827–837PubMedCrossRefGoogle Scholar
  22. Sakagami H, Aoki T, Simpson A, Tanuma S (1991) Induction of immunopotentiation activity by a protein-bound polysaccharide, PSK (review). Anticancer Res 11:993–999PubMedGoogle Scholar
  23. Silva, JN, Beirão T, Filipe P, Fernandes A (2006) Efeito de flavonóides no stress oxidante e foto-oxidante no eritrócito humano. Boletim da SPHM 21Google Scholar
  24. Tavares A, Agapito M, Coelho M, Silva J, Barros-Timmons A, Coutinho J, Xavier A (2005) Selection and optimization of culture medium for exopolysaccharide production by Coriolus (Trametes) versicolor. World J Microbiol Biotechnol 21:1499–1507CrossRefGoogle Scholar
  25. Tepe B, Daferera D, Tepe AS, Polissiou M, Sokmen A (2007) Antioxidant activity of the essencial oil and various extracts of Nepeta flavida Hub-Mor from Turkey. Food Chem 103:1358–1364CrossRefGoogle Scholar
  26. Tzianabos AO (2000) Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clinic Microbiol Rev 13(4):523–533CrossRefGoogle Scholar
  27. Wang JC, Hu SH, Liang ZC, Yeh CJ (2005) Optimization for the production of water-soluble polysaccharide from Pleurotus citrinopileatus in sumerged culture and its antitumor effect. Appl Microbiol Biotechnol 67:759–766PubMedCrossRefGoogle Scholar
  28. Zhang M, Cui SW, Cheung PCK, Wang Q (2007) Antitumor polyssacharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trend Food Sci Technol 18:4–19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • José M. Santos Arteiro
    • 1
    • 2
  • M. Rosário Martins
    • 1
    • 3
  • Cátia Salvador
    • 1
    • 2
  • M. Fátima Candeias
    • 1
    • 3
  • Amin Karmali
    • 4
  • A. Teresa Caldeira
    • 1
    • 2
    Email author
  1. 1.Department of ChemicalUniversity of ÉvoraÉvoraPortugal
  2. 2.CQE, University of ÉvoraÉvoraPortugal
  3. 3.ICAAM, University of ÉvoraÉvoraPortugal
  4. 4.CIEQB, ISELLisbonPortugal

Personalised recommendations