Skip to main content

Advertisement

Log in

Prenylated xanthones: antiproliferative effects and enhancement of the growth inhibitory action of 4-hydroxytamoxifen in estrogen receptor-positive breast cancer cell line

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The effects of three prenylated xanthones on the in vitro growth of estrogen-dependent ER (+) MCF-7 (breast), estrogen-independent ER (−) MDA-MB-231 cells (breast), and NCI-H460 (non-small cell lung) were investigated in a complete and/or steroid-free medium. 3,4-Dihydro-12-hydroxy-2,2-dimethyl-2H,6H-pyrano[3,2-b]xanthen-6-one (4), the most potent against the ER(+) MCF-7 cell line (GI50 = 5 μM), showed an enhancement in the anti-estrogenic effect of 4-hydroxytamoxifen in this ER(+) cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Botta B, Vitali A, Menendez P, Misiti D, Delle Monache G (2005) Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem 12:717–739

    Article  PubMed  Google Scholar 

  • Castanheiro RAP, Pinto MMM, Silva AMS, Cravo SMM, Gales L, Damas AM, Nazareth N, Nascimento MSJ, Eaton G (2007) Dihydroxyxanthones prenylated derivatives: Synthesis, structure elucidation, and growth inhibitory activity on human tumor cell lines with improvement of selectivity for MCF-7. Bioorg Med Chem 15:6080–6088

    Article  PubMed  CAS  Google Scholar 

  • Coezy E, Borgna JL, Rochefort H (1982) Tamoxifen and metabolites in MCF7 cells: correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res 42:317–323

    PubMed  CAS  Google Scholar 

  • Collins-Burow BM, Burow ME, Duong BN, McLachlan JA (2000) Estrogenic and antiestrogenic activities of flavonoid phytochemicals through estrogen receptor binding-dependent and -independent mechanisms. Nutr Cancer 38:229–244

    Article  PubMed  CAS  Google Scholar 

  • De Cos P, Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck AJ (2003) Phytoestrogens: recent developments. Planta Med 69:589–599

    Article  PubMed  CAS  Google Scholar 

  • Gritzapis AD, Baxevanis CN, Missitzis I, Katsanou ES, Alexis MN, Yotis J, Papamichail M (2003) Quantitative fluorescence cytometric measurement of estrogen and progesterone receptors: correlation with the hormone binding assay. Breast Cancer Res Treat 80:1–13

    Article  PubMed  CAS  Google Scholar 

  • Guo Q-L, Lin S-S, You Q-D, Gu H-Y, Yu J, Zhao L, Qi Q, Liang F, Tan Z, Wang X (2006) Inhibition of human telomerase reverse transcriptase gene expression by Gambogic acid in human hepatoma SMMC-7721 cells. Life Sci 78:1238–1245

    Article  PubMed  CAS  Google Scholar 

  • Hamada M, Iikubo K, Ishikawa Y, Ikeda A, Umezawa K, Nishiyama S (2003) Biological activities of α-mangostin derivatives against acid sphingomyelinase. Bioorg Med Chem Lett 13:3151–3153

    Article  PubMed  CAS  Google Scholar 

  • Hopert AC, Beyer A, Frank K, Strunck E, Wunsche W, Vollmer G (1998) Characterization of estrogenicity of phytoestrogens in an endometrial-derived experimental model. Environ Health Perspect 106:581–586

    Article  PubMed  CAS  Google Scholar 

  • Jensen J, Kitlen JW, Briand P, Labrie F, Lykkesfeldt AE (2003) Effect of antiestrogens and aromatase inhibitor on basal growth of the human breast cancer cell line MCF-7 in serum-free medium. J Steroid Biochem Mol Biol 84:469–478

    Article  PubMed  CAS  Google Scholar 

  • Journe F, Chaboteaux C, Dumon JC, Leclercq G, Laurent G, Body JJ (2004) Steroid-free medium discloses oestrogenic effects of the bisphosphonate clodronate on breast cancer cells. Br J Cancer 91:1703–1710

    PubMed  CAS  Google Scholar 

  • Journe F, Chaboteaux C, Magne N, Duvillier H, Laurent G, Body JJ (2006) Additive growth inhibitory effects of ibandronate and antiestrogens in estrogen receptor-positive breast cancer cell lines. Breast Cancer Res 8:R2

    Article  PubMed  Google Scholar 

  • Kitaoka M, Kadokawa H, Sugano M, Ichikawa K, Taki M, Takaishi S, Iijima Y, Tsutsumi S, Boriboon M, Akiyama T (1998) Prenylflavonoids: a new class of non-steroidal phytoestrogen (Part 1), Isolation of 8-isopentenylnaringenin and an initial study on its structure-activity relationship. Planta Med 64:511–515

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Akao Y, Yi H, Ohguchi K, Ito T, Tanaka T, Kobayashi E, Iinuma M, Nozawa Y (2004) Preferential target is mitochondria in α-mangostin-induced apoptosis in human leukemia HL60 cells. Bioorg Med Chem 12:5799–5806

    Article  PubMed  CAS  Google Scholar 

  • Milligan SR, Kalita JC, Heyerick A, Rong H, De Cooman L, De Keukeleire D (1999) Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J Clin Endocrinol Metab 84:2249–2252

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Midorikawa K, Koh M, Umezawa K, Kawanishi S (2004) Genistein and daidzein induce cell proliferation and their metabolites cause oxidative DNA damage in relation to isoflavoneinduced cancer of estrogen-sensitive organs. Biochemistry 43:2569–2577

    Article  PubMed  CAS  Google Scholar 

  • Palmeira A, Paiva A, Sousa E, Seca H, Almeida GM, Lima RT, Fernandes MX, Pinto M, Vasconcelos MH (2010) Insights into the in vitro antitumor mechanism of action of a new pyranoxanthone. Chem Biol Drug Des 76:43–58

    Article  PubMed  CAS  Google Scholar 

  • Pedro MM, Cerqueira F, Sousa ME, Nascimento MSJ, Pinto MMM (2002) Xanthones as inhibitors of growth of human cancer cell lines and their effects on the proliferation of human lymphocytes in vitro. Bioorg Med Chem 10:3725–3730

    Article  PubMed  CAS  Google Scholar 

  • Pedro M, Lourenço CF, Cidade H, Kijjoa A, Pinto M, Nascimento MSJ (2006) Effects of natural prenylated flavones in the phenotypical ER (+) MCF-7 and ER (−) MDA-MB-231 human breast cancer cells. Toxicol Lett 164:24–36

    Article  PubMed  CAS  Google Scholar 

  • Pinto MMM, Castanheiro R (2009) Natural prenylated xanthones: chemistry and biological activities. In: Goutam B (ed) Natural products chemistry. Biochemistry and Pharmacology, West Bengal, pp 520–675

    Google Scholar 

  • Pinto MMM, Sousa ME, Nascimento MSJ (2005) Xanthone derivatives: new insights in biological activities. Curr Med Chem 12:2517–2538

    Article  PubMed  CAS  Google Scholar 

  • Rowlands JC, Berhow MA, Badger TM (2002) Estrogenic and antiproliferative properties of soy sapogenols in human breast cancer cells in vitro. Food Chem Toxicol 40:1767–1774

    Article  PubMed  CAS  Google Scholar 

  • Schmitt E, Dekant W, Stopper H (2001) Assaying the estrogenicity of phytoestrogens in cells of different estrogen sensitive tissues. Toxicol In Vitro 15:433–439

    Article  PubMed  CAS  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Sousa EP, Silva AMS, Pinto MMM, Pedro MM, Cerqueira FAM, Nascimento MSJ (2002) Isomeric kielcorins and dihydroxyxanthones: synthesis, structure elucidation, and inhibitory activities of growth of human cancer cell lines and on the proliferation of human lymphocytes in vitro. Helv Chim Acta 85:2862–2876

    Article  CAS  Google Scholar 

  • Sousa E, Paiva A, Nazareth N, Gales L, Damas AM, Nascimento MSJ, Pinto M (2009) Bromoalkoxyxanthones as promising antitumor agents: synthesis, crystal structure and effect on human tumor cell lines. Eur J Med Chem 44:3830–3835

    Article  PubMed  CAS  Google Scholar 

  • Wakeling AE, Newboult E, Peters SW (1989) Effects of antioestrogens on the proliferation of MCF-7 human breast cancer cells. J Mol Endocrinol 2:225–234

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Kurzer MS (1998) Effects of phytoestrogens on DNA synthesis in MCF-7 cells in the presence of estradiol or growth factors. Nutr Cancer 31:90–100

    Article  PubMed  CAS  Google Scholar 

  • Zhang HZ, Kasibhatla S, Wang Y, Herich J, Guastella J, Tseng B, Drewe J, Cai SX (2004) Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg Med Chem 12:309–317

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by FCT [I&D, no. 4040 and PTDC/SAU-FCT/100930/2008], COMPETE, QREN, FEDER, POCI, U. Porto, and Santander Totta. The authors are also indebted to the National Cancer Institute, Bethesda, MD, USA, for the generous provision of the human tumor cell lines and to Sara Cravo for technical support in spectroscopic methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madalena Maria Magalhães Pinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paiva, A.M., Sousa, M.E., Camões, A. et al. Prenylated xanthones: antiproliferative effects and enhancement of the growth inhibitory action of 4-hydroxytamoxifen in estrogen receptor-positive breast cancer cell line. Med Chem Res 21, 552–558 (2012). https://doi.org/10.1007/s00044-011-9562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9562-z

Keywords

Navigation