Agarwal A, Srinivas K, Puri SK, Chauhan PMS (2005) Synthesis of 2, 4, 6-trisubstituted pyrimidines as antimalarial agents. Bioorg Med Chem 13:4645–4650
PubMed
Article
CAS
Google Scholar
Ali A, Taylor GE, Ellsworth K, Harris G, Painter R, Silver LL, Young K (2003) Novel pyrazolo[3, 4-d]pyrimidine-Based Inhibitors of staphlococcus aureus dna polymerase iii: design, synthesis, and biological evaluation. J Med Chem 46:1824–1830
PubMed
Article
CAS
Google Scholar
Bedair AH, Emam HA, El-Hady NA, Ahmed K, El-Agrody AM (2001) Synthesis and antimicrobial activities of novel naphtho[2, 1-b]pyran, pyrano[2, 3-d]pyrimidine and pyrano[3, 2-e][1, 2, 4]triazolo[2, 3-c]-pyrimidine derivatives. Farmaco 56(12):965–973
PubMed
Article
CAS
Google Scholar
Bonsignore L, Loy G, Secci D, Calignano A (1993) Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur J Med Chem 28:517–520
Article
CAS
Google Scholar
Chu TW, Plattner JJ, Katz L (1996) New directions in antibacterial research. J Med Chem 36:3853–3871
Article
Google Scholar
Collee JG, Duguid JP, Fraser AG, Marmion BP, (eds) (1989) Mackie and Mccartney practical medicinal microbiology, 13th edn. Churchill Livingstone, Edinburgh, p 87
Google Scholar
Dell CP, Williams AC (1995) pyrano[3,2-H]quinolines for treating restenosis. USP 5434160
Doshi JM, Tian D, Xing C (2007) Ethyl-2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H- chromene-3-carboxylate (HA 14–1), a prototype small-molecule antagonist against antiapoptotic bcl-2 proteins, decomposes to generate reactive oxygen species that induce apoptosis. Mol Pharm 30:919–928
Article
Google Scholar
Dye C, Scheele S, Dolin R, Pathania V, Raviglione M (1999) Global burden of tuberculosis. J Am Med Assoc 282:677–686
Article
CAS
Google Scholar
Eid FA, Abd El-Wahab AHF, El-Hag Ali GAM, Khafagy MM (2004) Synthesis and antimicrobial evaluation of naphtho[2, 1-b]pyrano[2, 3-d]pyrimidine and pyrano[3, 2-e][1, 2, 4]triazolo[1, 5-c]pyrimidine derivatives. Acta Pharma 54:13–26
CAS
Google Scholar
Ellis GP (1977) The chemistry of heterocyclic compounds. In: Weissberger A, Tailor EC (eds) Chromenes, chromanes and chromones. John Wiley, New York
Google Scholar
Espinal MA (2003) The global situation of MDR-TB. Tuberculosis 83:44–51
PubMed
Article
Google Scholar
Francis JS, Doherty MC, Lopatin U, Johnston CP, Sinha G, Ross T, Cai M, Hanse NN, Per T, Ticehurst JR, Carroll K, Thomas DL, Nuermberger E, Barlett JG (2005) Severe community-onset pneumonia in healthy adults caused by methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin genes. Clin Infect Dis 40:100–107
PubMed
Article
Google Scholar
Frieden TH, Sterling TH, Munsiff SS, Watt CJ, Dye C (2003) Tuberculosis. Lancet 362:887–899
PubMed
Article
Google Scholar
Gangjee A, Mavandadi F, Sherry F, Queener SF (1997) Effect of N9-methylation and bridge atom variation on the activity of 5-substituted 2, 4-diaminopyrrolo[2, 3-d]pyrimidines against dihydrofolate reductases from pneumocystis carinii and toxoplasma gondii. J Med Chem 40:1173–1177
PubMed
Article
CAS
Google Scholar
Green GR, Evans JM, Vong A (1995) Comprehensive heterocyclic chemistry. Pergamon Press, Oxford
Google Scholar
Hoult JRS, Moroney MA, Paya M (1994) Actions of flavonoids and coumarins on lipoxygenase and cyclooxygenase. Methods Enzymol 234:443–545
PubMed
Article
CAS
Google Scholar
Katiyar SB, Bansal I, Saxena JK, Chauhan PMS (2005) Syntheses of 2, 4, 6-trisubstituted pyrimidine derivatives as a new class of antifilarial topoisomerase II inhibitors. Bioorg Med Chem Lett 15:47–50
PubMed
Article
CAS
Google Scholar
Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh AJ (2004) Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis mode. Antimicrob Chemother 54:648–653
Article
CAS
Google Scholar
Ohnishi H, Kosuzume H, Suzuki Yasuo, Mochida T, (1982) 7-Diethylamino-5-methyl-thiazolo[5,4-d]pyrimidine and pharmaceutical composition containing same USP 4476127
Pietta PG (2000) Flavonoids as Antioxidants. J Nat Prod 63:1035–1042
PubMed
Article
CAS
Google Scholar
Ren Q, Cui Z, He H, Gu Y (2007) A facile synthesis and fungicidal activities of novel fluorine-containing pyrido[4, 3-d]pyrimidin-4(3H)-ones. J Fluorine Chem 128:1369–1375
Article
CAS
Google Scholar
Roberto B, Giovanna B, Maria LC, Raimondo M, Alessandro M, Paolo R, Giovanni S (2001) Three-component process for the synthesis of 2-amino-2-chromenes in aqueous media. Tetrahedron 57:1395–1398
Article
Google Scholar
Saudi MNS, Gaafar MR, El-Azzouni MZ, Ibrahim MA, Eissa MM (2008) Synthesis and evaluation of some pyrimidine analogs against toxoplasmosis. Med Chem Res 17:541–563
Article
CAS
Google Scholar
Siddiqi S (1992) Clinical microbiology handbook. ASM Press, Washington, D.C
Google Scholar
Smith P, Moss A (1994) Epidemiology of tuberculosis. B Bloom, Washington, D.C
Google Scholar
Stocks PA, Raynes KJ, Bray PG, Park BK, Neill PM, Ward SA (2002) Novel short chain chloroquine analogues retain activity against chloroquine resistant k1 plasmodium falciparum. J Med Chem 45:4975–4983
PubMed
Article
CAS
Google Scholar
Sunduru N, Agawal A, Katiyar S, Nishi B, Goyal N, Gupta S, Chauhan PMS (2006) Synthesis of 2, 4, 6-trisubstituted pyrimidine and triazine heterocycles as antileishmanial agents. Bioorg Med Chem 14:7706–7715
PubMed
Article
CAS
Google Scholar
Torrence PF, Fan X, Zhang X, Loiseau PM (2006) Structurally diverse 5-substituted pyrimidine nucleosides as inhibitors of Leishmania donovani promastigotes in vitro. Bioorg Med Chem Lett 16:5047–5051
PubMed
Article
CAS
Google Scholar
Tuberculosis Facts (2009) World Health Organization. http://www.who.int/tb/publications/2009/tbfactsheet_2009update_one_page.pdf