Skip to main content
Log in

A theoretical study of salicylate oxidation for ADME prediction

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The salicylic acid oxidation has been explained by a mechanism involving single electron transfer oxidation and single hydrogen transfer using quantum chemistry calculations at the B3LYP theory level, together with the 6-311G** basis set. These methods were employed to obtain energy (E), ionization potential (IP), bond dissociation energies (BDE), and spin density distribution of the salicylic acid. The results show no discrepant behaviors between electron and hydrogen transfer in the regioselective hydroxylation of salicylic acid by cytochrome P-450. The unpaired electron remains localized on the O7 phenolic oxygen (0.26 and 0.38), C1 carbon atoms at the carbonyl group (0.12 and 0.28), C2 carbon atom at the hydroxyl group (0.15 and 0.00), C3 carbon atom at the hydroxyl group (0.22 and 0.30), and C5 carbon atom (0.40 and 0.41) for cation free radical and semiquinone form, respectively. Calculations of spin densities showed that chemistry reactivity is more favored in the positions C5 > C3 > C1 to form salicylate derivatives. These results supported the salicylic acid as scavenger derivatives in the lipid peroxidation. Furthermore, we suggest a conventional proton and secondary electron abstraction, and semiquinone form by [1,5] hydrogen shift between phenol and carbonyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alves CN, Borges RS, Silva ABF (2006) Density functional theory study of metabolic derivatives of the oxidation of paracetamol. Int J Quantum Chem 106:2617–2823

    Article  CAS  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  PubMed  CAS  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  PubMed  CAS  Google Scholar 

  • Bessems MJGM, De Groot J, Baede EJ, te Koppele JM, Vermeulen NP (1998) Hydrogen atom abstraction of 3,5-disubstituted analogues of paracetamol by horseradish peroxidase and cytochrome P450. Xenobiotica 28:855–875

    Article  PubMed  CAS  Google Scholar 

  • Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods 21. Small split-valence basis sets for first row elements. J Am Chem Soc 102:939–947

    Article  CAS  Google Scholar 

  • Collier JC, Flower RJ (1971) Effect of aspirin on human seminal prostaglandins. Lancet 2(7729):852–853

    Article  PubMed  CAS  Google Scholar 

  • Coudray C, Favier A (2000) Determination of salicylate hydroxylation products as an in vivo oxidative stress marker. Free Rad Biol Med 29(11):1064–1070

    Article  PubMed  CAS  Google Scholar 

  • Diniz JEM, Borges RS, Nahum CN (2004) A DFT study for paracetamol and 3,5-disubstituted analogues. J Mol Struct 673:93–97

    CAS  Google Scholar 

  • Freire ADT, Landivar LMC, Queiroz AN, Borges RS (2009) A theoretical study for oxidative metabolism of salicylates. J Comput Theor Nanosci 6:1140–1142

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT

  • Grootveld M, Halliwell B (1986) Aromatic hydroxylation as a potential measure of hydroxyl-radical formation in vivo. Biochem J 237:499–504

    PubMed  CAS  Google Scholar 

  • Grootveld M, Halliwell B (1988) 2,3-Dihydroxybenzoic acid is a product of human aspirin metabolism. Biochem Pharmacol 37(2):271–280

    Article  PubMed  CAS  Google Scholar 

  • Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:612–640

    Google Scholar 

  • Hermann M, Kapiotis S, Hofbauer R, Exner M, Seelos C, Held I, Gmeiner BMK (1999) Salicylate inhibits LDL oxidation initiated by superoxide/nitric oxide radicals. FEBS Lett 445:212–214

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt A, Estabrook RW (1971) Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys 143:66–79

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Yang W, Parr RG (1998) Development of Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  • Luo X, Lehotay DC (1997) Determination of hydroxyl radicals using salicylate as a trapping agent by gas chromatography-mass spectrometry. Clin Biochem 30(1):41–46

    Article  PubMed  CAS  Google Scholar 

  • Maskos Z, Rush JD, Koppenol WH (1990) The hydroxylation of the salicylate anion by a Fenton reaction and gamma-radiolysis: a consideration of the respective mechanisms. Free Rad Biol Med 8:153–162

    Article  PubMed  CAS  Google Scholar 

  • Noshiro M, Ullrich V, Omura T (1981) Cytochrome b5 as electron donor for oxy-cytochrome P-450. Eur J Biochem 116:521–526

    Article  PubMed  CAS  Google Scholar 

  • Parr RG, Yang W (1989) in density-functional theory of atoms and molecules. Oxford University Press, New York, p 95–98

  • Queiroz AN, Gomes BAQ, Moraes WM Jr, Borges RS (2009) A theoretical antioxidant pharmacophore for resveratrol. Eur J Med Chem 44:1644–1649

    Article  PubMed  CAS  Google Scholar 

  • Rumble RH, Roberts MS, Wanwimolruk S (1981) Determination of aspirin and its major metabolites in plasma by high-performance liquid chromatography without solvent extraction. J Chromatogr 225:252–260

    Article  PubMed  CAS  Google Scholar 

  • Smith JB, Willis AL (1971) Aspirin selectively inhibits prostaglandin production in human platelets. Nature 231:235–237

    CAS  Google Scholar 

  • Stewart JJP (1989) Optimization of parameters for semi-empirical methods I-method. J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  • Von Sonntag C (1997) The chemical basis of radiation biology. Taylor and Francis, London

    Google Scholar 

Download references

Acknowledgments

LQF thanks the CNPq for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Santos Borges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos Borges, R., Salgado Mendes, A.P., Souza e Silva, B.H. et al. A theoretical study of salicylate oxidation for ADME prediction. Med Chem Res 20, 269–273 (2011). https://doi.org/10.1007/s00044-010-9320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-010-9320-7

Keywords

Navigation