Skip to main content
Log in

6-Imino-2-thioxo-pyrimidinones as a new class of dipeptidyl peptidase IV inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Dipeptidyl peptidase IV is a glycoprotein which removes N-terminal dipeptides from physiologically relevant polypeptides. An homologous series of 6-imino-2-thioxo-5-{[3,4,5-tris(methyloxy)phenyl]methyl}-2,5-dihydro-4(3H)-pyrimidinones has been tested for inhibition of DPP IV activity. The inhibitory effects at 0.1 mM were observed. Enzyme kinetic studies revealed that compounds inhibit DPP IV activity competitively. According to the molecular docking analysis, the inhibitors are anchored into the DPP IV hydrolytic site by interactions of the pyrimidinone core with Glu206, Tyr662, and Tyr547, with the alkyl chain entering the S1 pocket. We conclude that pyrimidinone-like compounds are a promising new scaffold for reversible inhibition of DPP IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DPP IV:

Dipeptidyl peptidase IV

GLP-1:

Glucagon-like peptide-1

GIP:

Glucose-dependent insulinotropic polypeptide

SAR:

Structure–activity relationship

RMSD:

Root mean square deviation

PDB:

Protein Data Bank

GOLD:

Genetic optimisation for ligand docking

MTS:

3-(4,5-Dimethylthiazole-2-yl)-5-(3-carboximethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazole

ECACC:

European Collection of Cell Cultures

THP-1:

Human monocytic leukemia

HepG2:

Human Caucasian hepatocyte carcinoma

References

  • Abbott CA, McCaughan GW, Gorrell MD (1999) Two highly conserved glutamic acid residues in the predicted beta propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett 458:278–284

    Article  PubMed  CAS  Google Scholar 

  • Abbott CA, Yu DMT, Woollatt E, Sutherland GR, McCaughan GW, Gorrell MD (2000) Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. Eur J Biochem 267:6140–6150

    Article  PubMed  CAS  Google Scholar 

  • ACD/Labs (2006) ACD/pKa DB, version 8.00. Advanced Chemistry Development Inc., Toronto. www.acdlabs.com

  • Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB (1979) Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 282:615–616

    Article  PubMed  CAS  Google Scholar 

  • Aertgeerts K, Ye S, Tennant MG, Kraus ML, Rogers J, Sang BC, Skene RJ, Webb DR, Prasad GS (2004) Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci 13:412–421

    Article  PubMed  CAS  Google Scholar 

  • Baxter CA, Murray CW, Clark DE, Westhead DR, Eldridge MD (1998) Flexible docking using TABU search and an empirical estimate of binding affinity. Proteins 33:367–382

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10:980

    Article  PubMed  CAS  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  PubMed  CAS  Google Scholar 

  • Boonacker E, Van Noorden Cornelis JF (2003) The multifunctional or moonlighting protein CD26/DPPIV. Eur J Cell Biol 82:53–73

    Article  PubMed  CAS  Google Scholar 

  • Brandt W (2000) Development of a tertiary-structure model of the C-terminal domain of DPP IV. Adv Exp Med Biol 477:97–101

    Article  PubMed  CAS  Google Scholar 

  • Brockunier LL, He J, Colwell LF Jr, Habulihaz B, He H, Leiting B, Lyons KA, Marsilio F, Patel RA, Teffera Y, Wu JK, Thornberry NA, Weber AE, Parmee ER (2004) Substituted piperazines as novel dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 14:4763–4766

    Article  PubMed  CAS  Google Scholar 

  • Deacon CF (2007) Incretin-based treatment of type 2 diabetes: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab 1:23–31

    Article  Google Scholar 

  • Glunčić B, Jakovina M, Kovačević K, Kujundžić N (1986) Substituted 5-(3,4,5-trimethoxybenzyl)-barbiturates: synthesis and antibacterial activity. Acta Pharm Jugosl 36:393–404

    Google Scholar 

  • Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WTM, Mortenson PN, Murray CW (2007) Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem 50:726–741

    Article  PubMed  CAS  Google Scholar 

  • Havre PA, Abe M, Urasaki Y, Ohnuma K, Morimoto C, Dang NH (2008) The role of CD26/dipeptidyl peptidase IV in cancer. Front Biosci 13:1634–1645

    Article  PubMed  CAS  Google Scholar 

  • Hughes TE, Mone MD, Russell ME, Weldon SC, Villhauer EB (1999) NVP-DPP728 (1-[[[2-[(5-cyanopyridin-2-yl)amino]ethyl]amino]acetyl]-2-cyano-(S)- pyrrolidine), a slow-binding inhibitor of dipeptidyl peptidase IV. Biochemistry 38:11597–11603

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  PubMed  CAS  Google Scholar 

  • Kesty NC, Roth JD, Maggs D (2008) Hormone-based therapies in the regulation of fuel metabolism and body weight. Expert Opin Biol Ther 8:1733–1747

    Article  PubMed  CAS  Google Scholar 

  • Kim YB, Kopcho LM, Kirby MS, Hamann LG, Weigelt CA, Metzler WJ, Marcinkeviciene (2006) Mechanism of Gly-Pro-pNA cleavage catalyzed by dipeptidyl peptidase-IV and its inhibition by saxagliptin (BMS-477118). J Arch Biochem Biophys 445:9–18

    Article  CAS  Google Scholar 

  • Madsbad S, Krarup T, Deacon CF, Holst JJ (2008) Glucagon-like peptide receptor agonists and dipeptidyl peptidase-4 inhibitors in the treatment of diabetes: a review of clinical trials. Curr Opin Clin Nutr Metab Care 11:491–499

    Article  PubMed  CAS  Google Scholar 

  • Marangoni AG (2003) Enzyme kinetics—a modern approach. Wiley-Interscience, Hoboken

    Google Scholar 

  • Mentlein R (1999) Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regul Pept 85:9–24

    Article  PubMed  CAS  Google Scholar 

  • Mentlein R, Gallwitz B, Schmidt WE (1993) Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 214:829–835

    Article  PubMed  CAS  Google Scholar 

  • Molecular Networks GmbH (2004) Tautomer enumerating programme MN.TAUTOMER. http://wwwmol-netde/software/tautomer/indexhtml

  • Mooij WTM, Verdonk ML (2005) Proteins-structure function and bioinformatics. Proteins 61:272–287

    Article  PubMed  CAS  Google Scholar 

  • Mosmann J (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Ohnuma K, Takahashi N, Yamochi T, Hosono O, Dang NH, Morimoto C (2008) Role of CD26/dipeptidyl peptidase IV in human T cell activation and function. Front Biosci 13:2299–2310

    Article  PubMed  CAS  Google Scholar 

  • Peters JU, Weber S, Kritter S, Weiss P, Wallier A, Boehringer M, Hennig M, Kuhn B, Loeffler BM (2004) Aminomethylpyrimidines as novel DPP-IV inhibitors: a 105-fold activity increase by optimization of aromatic substituents. Bioorg Med Chem Lett 14:1491–1493

    Article  PubMed  CAS  Google Scholar 

  • Pratley RE, Salsali A (2007) Inhibition of DPP-4: a new therapeutic approach for the treatment of type 2 diabetes. Curr Med Res Opin 23:919–931

    Article  PubMed  CAS  Google Scholar 

  • Pro B, Dang NH (2004) CD26/dipeptidyl peptidase IV and its role in cancer. Histol Histopathol 19:1345–1351

    PubMed  CAS  Google Scholar 

  • Sato K, Aytac U, Yamochi T, Yamochi T, Ohnuma K, McKee KS, Morimoto C, Dang NH (2003) CD26/dipeptidyl peptidase IV enhances expression of topoisomerase II alpha and sensitivity to apoptosis induced by topoisomerase II inhibitors. Br J Cancer 89:1366–1374

    Article  PubMed  CAS  Google Scholar 

  • Sorbera LA, Revel L, Castaner J (2001) P32/98: antidiabetic dipeptidyl-peptidase IV inhibitor. Drugs Future 26:859–864

    Article  CAS  Google Scholar 

  • Spotfire (2005) SpotFire DecisionSite® 8.2.1. http://spotfire.tibco.com/

  • Sudre B, Broqua P, White RB, Ashworth D, Evans DM, Haigh R, Junien JL, Aubert ML (2002) Chronic inhibition of circulating dipeptidase IV by FE999011 delays the occurrence of diabetes in male Zucker diabetic fatty rats. Diabetes 51:1461–1469

    Article  PubMed  CAS  Google Scholar 

  • Thoma R, Loeffler B, Stihle M, Huber W, Ruf A, Hennig M (2003) Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure 11:947–959

    Article  PubMed  CAS  Google Scholar 

  • Thompson MA, Ohnuma K, Abe M, Morimoto C, Dang NH (2007) CD26/dipeptidyl peptidase IV as a novel therapeutic target for cancer and immune disorders. Mini Rev Med Chem 7:253–273

    Article  PubMed  CAS  Google Scholar 

  • Thongtang N, Sriwijitkamol A (2008) Incretins: the novel therapy of type 2 diabetes. J Med Assoc Thai 91:943–954

    PubMed  Google Scholar 

  • Tripos Inc. (2003) SYBYL®, version 6.9.2. Tripos Inc., St Louis. www.tripos.com

  • Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 26:171–176

    Article  PubMed  CAS  Google Scholar 

  • Verbanac D, Jelić D, Stepanić V, Tatić I, Žiher D, Koštrun S (2005) Combined in silico and in vitro approach to drug screening. Croat Chem Acta 78:133–139

    CAS  Google Scholar 

  • Wiedeman PE (2007) DPPIV inhibition: promising therapy for the treatment of type 2 diabetes. Prog Med Chem 45:63–109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Professor Michael J. Parnham for his help in editing and critical reviewing of this manuscript, as well as to Dr. Andrew Leach for useful remarks. The authors are grateful to Snježana Dragojević for analytical characterization of the tested compounds. We also appreciate the excellent technical assistance provided by Ana Cvetković, Klara Markušić and Željka Tolić.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dubravko Jelić.

Additional information

Dubravko Jelić and Donatella Verbanac equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelić, D., Nujić, K., Stepanić, V. et al. 6-Imino-2-thioxo-pyrimidinones as a new class of dipeptidyl peptidase IV inhibitors. Med Chem Res 20, 339–345 (2011). https://doi.org/10.1007/s00044-010-9314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-010-9314-5

Keywords

Navigation