Medicinal Chemistry Research

, Volume 16, Issue 6, pp 300–318 | Cite as

Synthesis of some sulfonamides, disubstituted sulfonylureas or thioureas and some structurally related variants. A class of promising antitumor agents

  • Hassan M. Faidallah
  • Mohammed S. Al-Saadi
  • Sherif A. F. Rostom
  • Hesham T. Y. Fahmy
Original Research

Abstract

Some new benzenesulfonamides, disubstituted sulfonylureas, and sulfonylthioureas substituted basically with 3-(2-thienyl or 3-pyridyl)-indeno[1,2-c]pyrazol(in)e counterpart were synthesized to be evaluated for their in vitro antitumor activity. Some of the thioureido derivatives were cyclized to the corresponding five-membered thiazolidinons, thiazolines, and the six-membered thiazinones as interesting structure variants. According to the protocol of the National Cancer Institute (NCI) in vitro disease-oriented human cells screening panel assay, 13 compounds showed promising broad spectrum antitumor activity. In general, compounds containing the thienyl moiety displayed better antitumor spectra than those containing the pyridyl moiety. Compound 5, 4-(3-(2-thienyl)-3H-indeno[1,2-c]pyrazol-2-yl)-benzenesulfonamide [GI50, TGI, and LC50 (MG-MID) values of 13.2, 33.1 and 69.2 μM, respectively] proved to be the most active member in this study with variable degrees of potencies against all the tested subpanel tumor cell lines and particular effectiveness against the leukemia and prostate subpanels at both the GI50 (3.30 and 8.68 μM, respectively) and the TGI levels (15.7 and 22.3 μM, respectively).

References

  1. Acton EM, Narayanan VL, Risbood PA, Shoemaker RH, Vistica DT, Boyd MR (1994) Anticancer specificity of some Ellipticinium salts against human brain tumors in vitro. J Med Chem 37:2185–2189PubMedCrossRefGoogle Scholar
  2. Al-Saadi MSM, Rostom SAF, Faid-Allah HM (2005) In vitro antitumor screening of some polysubstituted pyrazole analogs. Saudi Pharm J 13:89–96Google Scholar
  3. Bekhit AA, Fahmy HT, Rostom SAF, Baraka AM (2003) Design and Synthesis of some substituted 1h-pyrazolyl-thiazolo[4,5-d]pyrimidines as anti-inflammatory-antimicrobial agents. Eur J Med Chem 38:27–36PubMedCrossRefGoogle Scholar
  4. Boyd MR, Paull KD (1995) Practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Rev Res 34:91–109CrossRefGoogle Scholar
  5. Brough PA, Barril X, Beswick M, Dymock BW, Drysdale MJ, Wright L, Grant K, Massey A, Surgenor A, Workman P (2005) 3-(5-Chloro-2,4-dihydroxyphenyl)-pyrazole-4-carboxamides as inhibitors of the Hsp90 molecular chaperone. Bioorg Med Chem Lett 15:5197–5201PubMedCrossRefGoogle Scholar
  6. Brzozowski Z, Saczewski F, Sławinski J, Bednarski PJ, Grunert R, Gdaniec M (2007) Synthesis, structural characterization, and in vitro antitumor activity of novel N-(6-chloro-1,1-dioxo-1,4,2-benzodithiazin-3-yl)arylsulfonamides. Bioorg Med Chem 15:2560–2572PubMedCrossRefGoogle Scholar
  7. Casini A, Scozzafava A, Mastrolorenzo A, Supuran CT (2002) Sulfonamides and sulfonylated derivatives as anticancer agents. Curr Cancer Drug Targets 2:55–75PubMedCrossRefGoogle Scholar
  8. Chern JW, Leu YL, Wang SS, Jou R, Lee CF, Tsou PC, Hsu SC, Liaw YC, Lin HM (1997) Synthesis and cytotoxic evaluation of substituted sulfonyl-N-hydroxy-guanidine derivatives as potential antitumor agents. J Med Chem 40:2276–2286PubMedCrossRefGoogle Scholar
  9. Cejudo R, Alzuet G, Gonzalez-Alvarez M, Garcia-Gimenez JL, Borras J, Liu-Gonzalez M (2006) DNA cleavage reaction induced by dimeric copper(II) complexes of N-substituted thiazole sulfonamides. J Inorg Biochem 100:70–79PubMedCrossRefGoogle Scholar
  10. Daidone G, Raffa D, Maggio B, Raimondi MV, Plescia F, Schillaci D (2004) Synthesis and antiproliferative activity of triazenoindazoles and triazenopyrazoles: a comparative study. Eur J Med Chem 39:219–224PubMedCrossRefGoogle Scholar
  11. De Simone G, Vitale RM, Di Fiore A, Pedone C, Scozzafava A, Montero J.-L., Winum JY, Supuran CT (2006) carbonic anhydrase inhibitors: hypoxia-activatable sulfonamides incorporating disulfide bonds that target the tumor-associated isoform IX. J Med Chem 49:5544–5551PubMedCrossRefGoogle Scholar
  12. El-Subbagh HI, Abadi AH, Lehmann J (1999) Synthesis and antitumor activity of ethyl 2-substituted-aminothiazole-4-carboxylate analogs. Arch Pharm Pharm Med Chem 332:137–142CrossRefGoogle Scholar
  13. Fahmy HT.; Rostom SAF, Bekhit AA (2002) Synthesis and antitumor evaluation of new polysubstituted thiazole and derived thiazolo[4,5-d]pyrimidine systems. Arch Pharm Pharm Med Chem 335:213–222CrossRefGoogle Scholar
  14. Fahmy HT, Rostom SAF, Saudi MNS, Zjawiony JK, Robins J (2003) Synthesis and in vitro anticancer evaluation of some new flourinated thiazolo[4,5-d]pyrimidines. Arch Pharm Pharm Med Chem 336:216–225CrossRefGoogle Scholar
  15. Guan X, Hoffman BN, McFarland DC, Gilkerson KK, Dwivedi C, Erickson AK, Bebensee S, Pellegrini J (2002) Glutathione and mercapturic acid conjugates of sulofenur and their activity against a human colon cancer cell line. Drug Metab Dispos 30:331–335PubMedCrossRefGoogle Scholar
  16. Grever MR, Schepartz SA, Chabner BA (1992) The national cancer institute cancer drug discovery and development program. Seminars Oncol 19:622–638Google Scholar
  17. Hu L, Li Z-R, Li Y, Qu J, Ling Y-H, Jiang J-D, Boykin DW (2006) Synthesis and structure–activity relationships of carbazole sulfonamides as a novel class of antimitotic agents against solid tumors. J Med Chem 49:6273–6282PubMedCrossRefGoogle Scholar
  18. Huang S, Lin R, Yu Y, Lu Y, Connolly PJ, Chiu G, Li S, Emanuel SL, Middleton SA (2007) Synthesis of 3-(1H-benzimidazo-2-yl)-5-isoquinolin-4-ylpyrazolo[1,2-b]pyridine, as a potent cyclin dependent kinase 1 (CDK 1) inhibitor. Bioorg Med Chem Lett 17:1243–1245PubMedCrossRefGoogle Scholar
  19. Krystof V, Cankar P, Frysova I, Slouka J, Kontopidis G, Dzubak P, Hajduch M, Srovnal J, de Azevedo Jr WF, Orsag M, Paprskarova M, Rolcik J, Latr A, Fischer PM, Strnad M (2006) 4-Arylazo-3,5-diamino-1H-pyrazole CDK Inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J Med Chem 49:6500–6509PubMedCrossRefGoogle Scholar
  20. Lee CW, Hong DH, Han S B, Jong S-H, Kim HC, Fine RL, Lee S-H, Kim HM (2002) A novel-stereo-selective sulfonylurea, 1-[1-(4-aminobenzoyl)-2,3-dihydro-1H-indol-6-sulfonyl]-4-phenyl-imidazolidin-2-one, has antitumor efficacy in in vitro and in vivo tumor models. Biochem Pharmacol 64:473–480PubMedCrossRefGoogle Scholar
  21. Mahboobi S, Sellmer A, Höcher H, Eichhorn E, Bär T, Schmidt M, Maier T, Stadlwieser JF, Beckers TL (2006) [4-(Imidazol-1-yl)thiazol-2-yl]phenylamines. A novel class of highly potent colchicine site binding tubulin inhibitors: synthesis and cytotoxic activity on selected human cancer cell lines. J Med Chem 49:5769–5776PubMedCrossRefGoogle Scholar
  22. Makki MS, Faidallah HM (1993) Pyrazole Derivatives Part 1: Synthesis and spectra of trisubstituted pyrazole derivatives with possible hypoglycemic activity. Int J Chem 4:117Google Scholar
  23. Mastrolorenzo A, Scozzafava A, Supuran CT (2000) 4-Toluenesulfonylureido derivatives of amines, amino acids and dipeptides: a novel class of potential antitumor agents. Eur J Pharm Sci 11:325–332PubMedCrossRefGoogle Scholar
  24. Medina JC, Roche D, Shan B, Learned RM, Frankmoelle WP, Clark DL, Rosen T, Jaen JC (1999) Novel halogenated sulfonamides inhibit the growth of multidrug resistant MCF-7/ADR cancer cells. Bioorg Med Chem Lett 9:1843–1846PubMedCrossRefGoogle Scholar
  25. Medina JC, Shan B, Beckmann H, Farrell RP, Clark DL, Learned RM, Roche D, Li A, Baichwal V, Case C, Baeuerle PA, Rosen T, Jaen JC (1998) Novel antineoplastic agents with efficacy against multidrug resistant tumor cells. Bioorg Med Chem Lett 8:2653–2656PubMedCrossRefGoogle Scholar
  26. Mohamadi F, Spees MM, Grindey GB (1992) Sulfonylureas: a new class of cancer chemotherapeutic agents. J Med Chem 35:3012–3016PubMedCrossRefGoogle Scholar
  27. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Jangley J, Cronisie P, Viagro-Wolff A, Gray-Goodrich M, Campell H, Boyd M (1991) Feasibility of a high flux anticancer drug screen utilizing a derive panel of human tumor cell lines in culture. J Natl Cancer Inst 83:757–766PubMedCrossRefGoogle Scholar
  28. Romagnoli R, Baraldi PG, Remusat V, Carrion MD, Cara CL, Preti D, Fruttarolo F, Pavani MG, Tabrizi MA, Tolomeo M, Grimaudo S, Balzarini J, Jordan MA, Hamel E (2006) Synthesis and biological evaluation of 2-(3’,4’,5’-trimethoxybenzoyl)-3-amino 5-aryl thiophenes as a new class of tubulin inhibitors. J Med Chem 49:6425–6428PubMedCrossRefGoogle Scholar
  29. Rostom SAF (2006) Synthesis and in vitro antitumor evaluation of some indeno[1,2-c]pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores and some derived thiazole ring systems. Bioorg Med Chem 14:6475–6485PubMedCrossRefGoogle Scholar
  30. Rostom SAF, Fahmy HT, Saudi MN S (2003) Synthesis and in vitro anti-HIV screening of certain 2-(benzoxazol-2-ylamino)-3h-4-oxopyrimidines. Sci Pharm 71:57–74Google Scholar
  31. Rostom SAF, Shalaby MA, El-Demellawy MA (2003) Polysubstituted pyrazoles, Part 5. Synthesis of new 1-(4-Chlorophenyl)-4-hydroxy-1H-pyrazole-3-carboxylic acid hydrazide analogs and some derived ring systems. A novel class of potential antitumor and anti-HCV agents. Eur J Med Chem 38:959–974PubMedCrossRefGoogle Scholar
  32. Scozzafava A, Supuran CT (2000) High affinity isozymes I, II and IV activators, derivatives of 4-(4-chlorophenylsulfonylureido-amino acyl)ethyl-1H-imidazole. Eur J Pharm Sci 10:29–41PubMedCrossRefGoogle Scholar
  33. Singh P, Kaur P, Luxami V, Kaur S, Kumar S (2007) Synthesis and anticancer activities of 2-[1-(indol-3-yl-/pyrimidin-5-yl-/pyridin-2-yl-/quinolin-2-yl)-but-3-enylamino]-2-phenyl-ethanols. Bioorg Med Chem 15:2386–2395PubMedCrossRefGoogle Scholar
  34. Srivastava BK, Solanki M, Mishra B, Soni R, Jayadev S, Valani D, Jain M, Patel PR (2007) Synthesis and antibacterial activity of 4,5,6,7-tetrahydro-thieno[3,2-c]pyridine quinolones. Bioorg Med Chem Lett 17:1924–1929PubMedCrossRefGoogle Scholar
  35. Supuran CT, Briganti F, Tilli S, Chegwidden R, Scozzafava A (2001) Carbonic anhydrase inhibitors: Sulfonamides as antitumor agents. Bioorg Med Chem 9:703–714PubMedCrossRefGoogle Scholar
  36. Toth JE, Grindey GB, Ehlhardt WJ, Ray JE, Boder GB, Bewley JR, Klingerman KK, Gates SB, Rinzel SM, Schultz RM, Weir LC, Worzalla JF (1997) Sulfonimideamide analogs of oncolytic sulfonylureas. J Med Chem 40:1018–1025PubMedCrossRefGoogle Scholar
  37. Yalowitz JA, Pankiewicz K, Patterson SE, Jayaram HN (2002) Cytotoxicity and cellular differentiation activity of methylenebis(phosphonate) analogs of tiazofurin and mycophenolic acid adenine dinucleotide in human cancer cell lines. Cancer Lett 181:31–38PubMedCrossRefGoogle Scholar
  38. Zhao H, Serby MD, Xin Z, Szczepankiewicz BG, Liu M, Kosogof C, Liu B, Nelson LTJ, Johnson EF, Wang S, Pederson T, Gum RJ, Clampit JE, Haasch DL, Abad-Zapatero C, Fry EH, Rondinone C, Trevillyan JM, Sham HL, Liu G (2006) Discovery of potent, highly selective, and orally bioavailable pyridine carboxamide c-Jun NH2-terminal kinase inhibitors. J Med Chem 49:4455–4458PubMedCrossRefGoogle Scholar

Copyright information

© Birkha¨user Boston 2007

Authors and Affiliations

  • Hassan M. Faidallah
    • 1
  • Mohammed S. Al-Saadi
    • 1
  • Sherif A. F. Rostom
    • 1
  • Hesham T. Y. Fahmy
    • 2
  1. 1.Department of Medicinal Chemistry, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Pharmaceutical Sciences, College of PharmacySouth Dakota State UniversityBrookingsUSA

Personalised recommendations