Skip to main content
Log in

Stability of DNA upon interaction with dimethyltin dichloride

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Chemical and thermal denaturation of calf thymus DNA (as a multidomain macromolecule) have been investigated in the presence of high concentrations of dimethyltin dichloride (Me2SnCl2) over the temperature range (55–95°C) in 50.0 mM phosphate buffer at pH 7.6 using temperature scanning spectroscopy and calorimetry methods. Results showed that over the concentration range of 6–16 mM, Me2SnCl2 is a chemical denaturant and denatures the double-strand DNA in a three-state manner. The denaturation data are analyzed based on the effective Gibbs free energy (ΔG°eff) approach and the chemical denaturation parameters including ΔG°eff, m value and equilibrium unfolding constant (K U) were obtained. Ultraviolet (UV) melting curves of the DNA at 260 nm as well as the calorimetric measurements were used to estimate the binding constants (K), melting enthalpy (ΔH°m) and binding enthalpy (ΔH°b). Furthermore, at low concentrations (up to 5 mM), Me2SnCl2 binds to the phosphate groups of DNA in an exothermic step and had no significant effect on double-strand DNA stability, confirmed by the fact that the T m value did not change. However, high (denaturing) concentrations of Me2SnCl2 (more than 9 mM) caused considerable destabilization of DNA associated with the formation of a partially unfolded intermediate at 13.6 mM of Me2SnCl2. The formed intermediate showed a lower thermal transition temperature (T m) by a magnitude of 10°C in relation to the native DNA. Finally, a new correlation is introduced for interpretation of thermal denaturation behavior of calf thymus DNA over the whole range of ligand (Me2SnCl2) concentration (0–16 mM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad F, Salahuddin A (1976) Reversible unfolding of the major fraction of ovalbumin by guanidine hydrochloride. Biochemistry 15:5168

    Article  PubMed  CAS  Google Scholar 

  • Arscott PG, Li AZ, Bloomfield VA (1990) Condensation of DNA by trivalent cations, 1: Effects of DNA length and topology on the size and shape of condensed particles. Biopolymers 30:619–630

    Article  PubMed  CAS  Google Scholar 

  • Backmann J, Schafer G, Wyns L, Bonisch H (1998) The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J Mol Biol 284:817–833

    Article  PubMed  CAS  Google Scholar 

  • Barbieri R, Sikvestri A (1991) The interaction of native DNA with dimethyltin (IV) species. J Inorg Biochem, 41:31–35

    Article  PubMed  CAS  Google Scholar 

  • Barbieri R, Alonzo G, Herber RH (1987) The configuration and lattice dynamics of complexes of dialkyltin(IV) with adenosine 5′-monophosphate and phenyl phosphates. J Chem Soc Dalton Trans 789–794

  • Barbieri R, Silvestri A, Piro V, (1990) Tin 119Sn: Mossbauer titration of dimethyltin-and trimethyltin (IV) hydroxides with model ligands mimicking nucleic acid phosphate sites, and with deoxyribonucleic acid. J Chem Soc Dalton Trans 3605–3609

  • Barbieri R, Silvestri A, Giuliani AM, Piro V (1992) Organotin compounds and deoxyribonucleic acid. V J Chem Soc Dalton Trans 585–590

  • Barone G, Barbieri R, LaManna G, Kock MHJ (2000) The interaction of deoxyribonucleic acid with methyltin (IV) moieties in solution studied by small-angle X-ray scattering, circular dichroism and UV spectroscopy. Appl Organometal Chem 14:189–196

    Article  CAS  Google Scholar 

  • Basu HS, Pellarin M, Feuerstein BG, Shirahata A, Samejima K, Deen DF, Martin LJ (1993) Interaction of a polyamine analogue, 1,19-bis-(ethylamino)-5,10,15-triazanonadecane (BE-4-4-4-4), with DNA and effect on growth, survival, and polyamine levels in seven human brain tumor cell lines. Cancer Res 53:3948–3955

    PubMed  CAS  Google Scholar 

  • Bathaie SZ, Moosavi-Movahedi AA, Ranjbar B, Saboury AA (2003) A mechanistic study of the histone H1-DNA complex dissociation by sodium dodecyl sulfate. Colloids Surfaces B 28:17–25

    Article  CAS  Google Scholar 

  • Bathaie SZ, Moosavi-Movahedi AA, Saboury AA (1999) Energetic and binding properties of DNA upon interaction with dodecyl trimethylammonium bromide. Nucleic Acids Res 27:1001–1005

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya S, Mandal SS (1997) Interaction of surfactants with DNA. Role of hydrophobicity and surface charge on intercalation and DNA melting. Biochim Biophys Acta 1323:29–44

    Article  PubMed  CAS  Google Scholar 

  • Blake RD, Delcourt SG (1998) Thermal stability of DNA. Nucleic Acids Res 26(14):3323–3332

    Article  PubMed  CAS  Google Scholar 

  • Blunden SJ, Chapman A (1986) Organometallic Compounds in the Environment (Ed PJ Craig). Wiley, New York, Ch 3, pp 111–159

  • Blunden SJ, Cusack PA, Hill R (1985) The Industrial Uses of Tin Chemicals, the Royal Society of Chemistry, London

  • Boudker O, Todd MJ, Freire E (1997) The structural stability of the co-chaperonin GroES, J Mol Biol 272:770–779

    Article  PubMed  CAS  Google Scholar 

  • Carra JH, Privalov PL (1995) Energetics of denaturation and m values of staphylococcal nuclease mutants. Biochemistry 34:2034–2041

    Article  PubMed  CAS  Google Scholar 

  • Casini A, Messori L, Orioli P, Gielen M, Kemmer M, Willem R (2001) Interactions of two cytotoxic organotin (IV) compounds with calf thymus DNA. J Inorg Biochem, 85(4):297–300

    Article  PubMed  CAS  Google Scholar 

  • Clarke MJ, Zhu F, Frasca DR (1999) Non-platinum chemotherapeutic metallopharmaceuticals. Chem Rev 99:2511–2533

    Article  PubMed  CAS  Google Scholar 

  • Duguid JG, Bloomfield VA, Benevides JM, Thomas Jr. GJ (1995) Raman spectroscopy of DNA-metal complexes, II: The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+ and Cd2+. Biophys J 69:2623–2641

    PubMed  CAS  Google Scholar 

  • Frank-Kamenetskii F (1971) Simplification of the empirical relationship between melting temperature of DNA, its GC content and concentration of sodium ions in solution. Biopolymers 10(12):2623–2624

    Article  PubMed  CAS  Google Scholar 

  • Freifelder D (1986) Molecular Biology. Jones and Bartlett, USA

    Google Scholar 

  • Ghaemmaghami S, Fitzgerald MC, Oas TG (2000) A quantitative, high-throughput screen for protein stability. Proc Natl Acad Sci 97:8296–8301

    Article  PubMed  CAS  Google Scholar 

  • Greene RFJ, Pace CN (1974) Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, [alpha]-chymotrypsin, and [beta]-lactoglobulin. J Biol Chem 249:5388–5393

    PubMed  CAS  Google Scholar 

  • Gruenwedel DW (1974) Salt effects on the denaturation of DNA: A calorimetric investigation of the transition enthalpy of calf thymus DNA in Na2SO4 solutions of varying ionic strength. Biochim Biophys Acta 340(1):16–30

    PubMed  CAS  Google Scholar 

  • Guthe S, Kapinos L, Moglish A, Meier S, Grzesiek S, Kiefhaber T (2004) Very fast folding and association of a trimerization domain from bacteriophage T4 fibritin, J Mol Biol 337:905–915

    Article  PubMed  CAS  Google Scholar 

  • Hillen W, Goodman TC, Wells RD (1981) Salt dependence and thermodynamic interpretation of the thermal denaturation of small DNA restriction fragments. Nucleic Acids Res 9(2):415–436

    Article  PubMed  CAS  Google Scholar 

  • Hofr C, Brabec V (2001) Thermal and thermodynamic properties of duplex DNA containing site-specific interstrand cross-link of antitumor cisplatin or its clinically ineffective trans isomer. J Biol Chem 276:9655–9661

    Article  PubMed  CAS  Google Scholar 

  • Hynes MJ, Dowd MO (1987) Interactions of the trimethyltin (IV) cation with carboxylic acids, amino acids, and related ligands. J Chem Soc Dalton Trans 563–566

  • Inman RB, Baldwin RL (1964) Helix-random coil transitions in DNA homopolymer pairs. J Mol Biol 8:452–469

    PubMed  CAS  Google Scholar 

  • Jenkins SM, Ehman K, Barone S (2004) Structure–activity comparison of organotin species: dibutyltin is a developmental neurotoxicant in vitro and in vivo. Develop Brain Res 151(1–2):1–12

    Article  CAS  Google Scholar 

  • Johnson CR, Morin PE, Arrowsmith CH, Freire E (1995) Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. Biochemistry 34:5309–5316

    Article  PubMed  CAS  Google Scholar 

  • Korolev N, Lyubartsev AP, Nordenskio L (1998) Application of polyelectrolyte theories for analysis of DNA melting in the presence of Na+ and Mg2+ ions. Biophys J 75:3041–3056

    Article  PubMed  CAS  Google Scholar 

  • Korolev N, Vlasov AP, Kuznetsov IA (1994) Thermal denaturation of Na- and Li-DNA in salt free solutions. Biopolymers 34:1275–1290

    Article  PubMed  CAS  Google Scholar 

  • Leng F, Chaires JB, Waring MJ (2003) Energetics of echinomycin binding to DNA. Nucleic Acids Res 31(21):6191–6197

    Article  PubMed  CAS  Google Scholar 

  • Leng F, Priebe W, Chaires JB (1998) Ultratight DNA binding of a new bisintercalating anthracycline antibiotic. Biochemistry 37:1743–1753

    Article  PubMed  CAS  Google Scholar 

  • Lobo BA, Davis A, Koe G, Smith JG, Middaugh CR (2001) Isothermal titration calorimetric analysis of the interaction between cationic lipids and plasmid DNA, Arch Biochem Biophys 386:95–105

    Article  PubMed  CAS  Google Scholar 

  • Lovett CM Jr, Fitzgibbon TN, Chang R (1989) Effect of UV irradiation on DNA as studied by its thermal denaturation. J Chem Edu 66(6)

  • Luck G, Zimmer C (1972) Conformational aspects and reactivity of DNA: Effects of manganese and magnesium ions on interaction with DNA. Eur J Biochem 29:528–536

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudi A, Nazari K, Mohammadian N, Safarian S, Moosavi-Movahedi AA (2000) The relationship of function and structural stability of horseradish peroxidase by interaction with Cu2+ and Ni2+ ions. Biophys J 78(1):1748

    Google Scholar 

  • Makhatadze GI, Privalov PL (1993) Contribution of hydration to protein folding thermodynamics, I: The enthalpy of hydration. J Mol Biol 232:639–659

    Article  PubMed  CAS  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    PubMed  CAS  Google Scholar 

  • Mascotti DP, Lohman TM (1997) Thermodynamics of oligoarginines binding to RNA and DNA. Biochemistry 36:7272–7279

    Article  PubMed  CAS  Google Scholar 

  • McFaydyen WD, Sotirellis N, Denny WA, Wakelin PG (1990) The interaction of substituted and rigidly linked diquinolines with DNA. Biochim Biophys Acta 1048:50–58

    Google Scholar 

  • McGhee JD (1976) Theoretical calculations of the helix-coil transition of DNA in the presence of large, cooperatively binding ligands. Biopolymers 15:1345–1375

    Article  PubMed  CAS  Google Scholar 

  • Mildvan AS, Loeb LA (1979) The role of metal ions in the mechanisms of DNA and RNA polymerases. CRC Crit Rev Biochem 6:219–244

    Article  PubMed  CAS  Google Scholar 

  • Moosavi-Movahedi AA, Golchin AR, Nazari K, Saboury AA (2004) Chamani, Microcalorimetry, energetics and binding studies of DNA-dimethyltin dichloride complexes, J and Tangestani-Nejad, S. Thermochimica Acta 414:233–241

    Article  CAS  Google Scholar 

  • Nazari K, Moosavi-Movahedi AA (2000) Potentiometric titration and enthalpy evaluation of horseradish peroxidase in the presence of n-dodecyl trimethylammonium bromide. Colloids Surfaces B 18:63–70

    Article  CAS  Google Scholar 

  • Nazari K, Golchin AR, Moosavi-Movahedi AA, Saboury AA, Shokravi A, Tangestani-Nejad (2005) Microcalorimetry and binding studies of DNA upon interaction with [pyridine diamine] 2[co(phenanthroline dicarboxylate)2]. Thermochimica Acta 220(3):292–299

  • Pace CN (1990) Measuring and increasing protein stability. Trends Biotech 8:93

    Article  CAS  Google Scholar 

  • Pace NC (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol 131:266–280

    PubMed  CAS  Google Scholar 

  • Panse VG, Swaminathan CP, Aloor JJ, Surolia A, Varadarajan R (2000) Unfolding thermodynamics of the tetrameric chaperone SecB. Biochemistry 39:2362–2369

    Article  PubMed  CAS  Google Scholar 

  • Park C, Marqusee S (2004) Analysis of the stability of multimeric proteins by effective ΔG and effective m-values. Prot Sci 13:2553–2558

    Article  CAS  Google Scholar 

  • Pellerito C, Nagy L, Pellerito L, Szorcsik A (2006) Biological activity studies on organotin (IV)n+ complexes and parent compounds. J Organomet Chem 691(8):1733–1747

    Article  CAS  Google Scholar 

  • Penninks AH, Seinen W (1984) Mechanisms of dialkyltin induced immunopathology, Vet Q 6:209–219

    PubMed  CAS  Google Scholar 

  • Pezzano H, Pato F (1980) Structure of binary complexes of mono- and polynucleotides with metal ions of the first transition group. Chem Rev 80:365–401

    Article  CAS  Google Scholar 

  • Privalov PL (1979) Stability of proteins: small globular proteins. Adv Prot Chem 33:167–197

    Article  CAS  Google Scholar 

  • Ptitsyn OB (1992) The molten globule state in Protein Folding, (Ed. Creighton TE), Freeman, New York, pp 243–300

  • Ptitsyn OB (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229

    PubMed  CAS  Google Scholar 

  • Ragone R (2000) How the protein concentration affects unfolding curves of oligomers. Biopolymers 53:221–225

    Article  PubMed  CAS  Google Scholar 

  • RamakarishnanV (1997) Histone structure and the organization of the nucleosome. Annu Rev Biophys Biomol Struct 26:83–112

    Article  Google Scholar 

  • Raspud E, Olvera M, Cruz de la Silkarav JL, Livolan F (1998) Precipitation of DNA by polyamines: A polyelectrolyte behavior. Biophys J 74:381–393

    Google Scholar 

  • Santoro MM, Bolen DW (1992) A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range. Biochemistry 31:4901–4907

    Article  PubMed  CAS  Google Scholar 

  • Schellman J (1978) Solvent denaturation. Biopolymers 17:1305–1322

    Article  CAS  Google Scholar 

  • Schildkraut C (1965) Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3:195–208

    Article  PubMed  CAS  Google Scholar 

  • Schultze P, Hud NV, Smith FW, Feigon J (1999) The effect of sodium, potassium and ammonium ions on the conformation of the dimeric quadruplex formed by the Oxytricha nova telomere repeat oligonucleotide d(G(4)T(4)G(4)). Nucleic Acids Res 27(15):3018–3028

    Article  PubMed  CAS  Google Scholar 

  • Shchyolkina AK, Borisova OF, Livshits MA, Pozmogova GE, Chernov BK, Klement R, Jovin TM (2000) Parallel-stranded DNA with mixed AT/GC composition: role of trans G·C base pairs in sequence dependent helical stability. Biochemistry 39:10034–10044

    Article  PubMed  CAS  Google Scholar 

  • Shortle D (1989) Probing the determinants of protein folding and stability with amino acid substitutions. J Biol Chem 264:5315–5318

    PubMed  CAS  Google Scholar 

  • Silinski P, Allingham MG, Fitzgerald MC (2001) Guanidine-induced equilibrium unfolding of a hexameric enzyme 4-oxalocrotonate tautomerase (4-OT). Biochemistry 40:4493–4502

    Article  PubMed  CAS  Google Scholar 

  • Soulages JL (1998) Chemical denaturation: Potential impact of undetected intermediates in the free energy of unfolding and m-values obtained from a two-state assumption. Biophys J 75:484–492

    PubMed  CAS  Google Scholar 

  • Syng-ai C, Basu Baul TS, Chatterjee A (2001) Inhibition of cell proliferation and antitumor activity of a novel organotin compound, J Environ Pathol Toxicol Oncol 20(4):333–342

    PubMed  CAS  Google Scholar 

  • Tabassum S, Pettinari C (2006) Chemical and biotechnological developments in organotin cancer chemotherapy. J Organomet Chem 691(8):1761–1766

    Article  CAS  Google Scholar 

  • Yao M, Bolen DW (1995) How valid are denaturant-induced unfolding free energy measurements? Level of conformance to common assumptions over an extended range of ribonuclease A stability. Biochemistry 34:3771–3781

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the research council of Islamic Azad University, the research council of Tehran University and the Iran National Science Foundation are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nazari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazari, K., Gholami, N. & Moosavi-Movahedi, A.A. Stability of DNA upon interaction with dimethyltin dichloride. Med Chem Res 16, 238–257 (2007). https://doi.org/10.1007/s00044-007-9028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-007-9028-5

Keywords

Navigation