Skip to main content

Advertisement

Log in

Predicting anti-allergic activity of 4-oxopyrimido [4,5-b]quinolines: Computational approach using topochemical indices

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The relationship between the topochemical indices and antiallergic activity of 4-oxopyrimido[4,5-b]quinolines was investigated. Three topochemical indices—Wiener’s topochemical index, a distance-based topochemical descriptor; molecular connectivity topochemical index, an adjacency-based topochemical descriptor; and eccentric connectivity topochemical index, an adjacency-cum-distance based topochemical descriptor—were used for the present investigation. A data set comprising 49 analogs of substituted 4-oxopyrimido[4,5-b]quinolines was selected for the present study. The values of the Wiener’s topochemical index, molecular connectivity topochemical index, and eccentric connectivity topochemical index for each of the 49 analogs comprising the data set were computed. The resulting data were analyzed and suitable models were developed after identification of the active ranges. Subsequently, a biological activity was assigned to each analog involved in the data set via these models, which was then compared with the reported antiallergic activity. Accuracy of prediction was found to vary from a minimum of approximately 86% to a maximum of approximately 88%. These models offer vast potential for providing lead structures for the development of potent antiallergic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Althuis TH, Kadin SB, Czuba LJ, Moore PF, Hess HJ (1980) Structure-activity relationships in a series of novel 3,4-dihydro-4-oxopyrimido[4,5-b]quinoline-2-carboxylic acid anti-allergy agents. J Med Chem 23:262–269

    Article  CAS  Google Scholar 

  • Bajaj S, Sambi SS, Madan AK (2004) Predicting anti-HIV activity of phenethylthiazolethiourea (PETT) analogs: computational approach using Wiener’s topochemical index. J Mol Struct (THEOCHEM) 684:197–203

    Article  CAS  Google Scholar 

  • Balaban AT (1994) Local versus global (i.e. atomic versus molecular) numerical modelling of molecular graphs. J Chem Inf Comput Sci 34:398–402

    Article  CAS  Google Scholar 

  • Balaban AT (1995) Chemical graphs: Looking back and glimpsing ahead. J Chem Inf Compt Sci 35:339–350

    Article  CAS  Google Scholar 

  • Bonchev D, Mekenyan Ov, Trinajstic N (1980) Topological characterization of cyclic structures. Int J Quantum Chem 17:845–983

    Article  CAS  Google Scholar 

  • Bonchev D, Trinajstic N (1978) On topological characterization of molecular branching. Int J Quantum Chem: Quantum Chem Symp 12:293–303

    CAS  Google Scholar 

  • Bonchev DJ (1995) Topological order in molecules. 1. Molecular branching revisited. J Mol Str (THEOCHEM) 336:137–156

    Article  CAS  Google Scholar 

  • Ciprandi G, Cirillo IG, Vizzaccaro A, Tosca MA (2005) Levocetirizine improves nasal symptoms and airflow in patients with persistent allergic rhinitis: a pilot study. Allerg Immunol (Paris) 37:25–29

    CAS  Google Scholar 

  • Cvetkovic D, Gutman I (1977) Note on branching. Croat Chem Acta 49:115–121

    CAS  Google Scholar 

  • de Julian-Ortiz JV, de Gregorio Alapont C, Rios-Santamarina I, Garcia-Domenech R, Galvez J (1998) Prediction of properties of chiral compounds by molecular topology. J Mol Graphics Mod 16:14–18

    Article  Google Scholar 

  • Devilers J, Balaban AT, eds (1999) Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam: Gordon and Breach

    Google Scholar 

  • Diudea MV (1999) Valencies of property. Croat Chem Acta 72:835–851

    CAS  Google Scholar 

  • Diudea MV, Gutman I (1998) Wiener-type topological indices. Croat Chem Acta 71:21–51

    CAS  Google Scholar 

  • Diudea MV, Ivanciuc O (1995) Molecular Topology. Cluj, Romania: Comprex

    Google Scholar 

  • Dureja H, Madan AK (2005) Topochemical models for prediction of cyclindependent kinase 2 inhibitory activity of indole-2-ones. J Mol Mod 11:525–531

    Article  CAS  Google Scholar 

  • Dureja H, Madan AK (2006) Prediction of h5-HT2A receptor antagonistic activity of arylindoles: computational approach using topochemical descriptors. J Mol Graph Mod, Published online: March 6, 2006

  • Erb KJ, Wohlleben G (2002) Novel vaccines protecting against the development of allergic disorders: a double-edged sword? Curr Opin Immunol 14:633–643

    Article  CAS  Google Scholar 

  • Estrada E, Pena P, Garcia-Domenech R (1998) Designing sedative hypnotic compounds from a novel substructural graph-theoretical approach. J Comput Aided Mol Des 12:583–595

    Article  CAS  Google Scholar 

  • Galvez J, Garcia-Domenec R, Dejulian-Ortiz JN, Soler R (1995) Topological approach to drug design. J Chem Inf Comput Sci 35:272–284

    Article  CAS  Google Scholar 

  • Gangur V, Birmingham NP, Thanesvorakul S, Joseph S (2003) CCR3 and CXCR3 as drug targets for allergy: principles and potential. Curr Drug Targets Inflamm Allergy 2:53–62

    Article  CAS  Google Scholar 

  • Garcia-Domenech R, de Gregorio Alapont C, de Julian-Ortiz JV, Galvez J, Popa L (1997) Molecular connectivity to find beta-blockers with low toxicity. Bioorg Med Chem Lett 7:567–572

    Article  CAS  Google Scholar 

  • Garcia-Domenech R, de Julian-Ortiz JV, Durat MJ, Garcia-Torrecillas JM, Anton-Fos GM, Rios-Santamarina I, de Gregorio Alapont C, Galvez J (2001) Search of a topological pattern to evaluate toxicity of heterogeneous compounds. SAR QSAR Environ Res 12:237–254

    Article  CAS  Google Scholar 

  • Goel A, Madan AK (1995) Structure-activity study on anti-inflammatory pyrazole carboxylic acid hydrazide analogs using molecular connectivity indices. J Chem Inf Comput Sci 35:510–514

    Article  CAS  Google Scholar 

  • Gupta S, Singh M, Madan AK (2000) Predicting anti-HIV activity: computational approach using a novel topological descriptor. J Comput Aid Mol Des 15:671–678

    Article  Google Scholar 

  • Gutman I, Randic M (1977) Algebraic characterization of skeletal branching. Chem Phys Lett 47:15–19

    Article  CAS  Google Scholar 

  • Harary F (1969) Graph Theory. Reading, MA: Addison–Wesley

    Google Scholar 

  • Hosoya H (1971) Newly proposed quantity characterizing the topological nature of structure of isomers of saturated hydrocarbons. Bull Chem Soc Jpn 44:2332–2337

    Article  CAS  Google Scholar 

  • Ivanciuc O, Ivanciuc T, Balaban AT (1998) Quantitative structure-property relationship study of normal boiling points for halogen-/oxygen-/sulfur-containing organic compounds using CODESS Program. Tetrahedron 54:9129–9142

    Article  CAS  Google Scholar 

  • Ivanciuc O, Ivanciuc T, Diudea MV (1997) Molecular graph matrices and derived structural descriptors. SAR QSAR Environ Res 7:63–87

    Article  CAS  Google Scholar 

  • Karelson M (2000) Molecular Descriptors in QSAR/QSPR. New York: Wiley-Interscience

    Google Scholar 

  • Kumar V, Madan AK (2004) Topological model for the prediction of alpha – 1 adrenoceptor antagonistic activity of arylpiperazines. J Theo Comput Chem 3:245–255

    Article  CAS  Google Scholar 

  • Kumar V, Sardana S, Madan AK (2004) Predicting anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-ones: Computational approach using reformed eccentric connectivity index. J Mol Mod 10:399–407

    Article  Google Scholar 

  • Lather V, Madan AK (2004) Models for the prediction of adenosine receptor binding activity of 4-amino(1,2,4)-triazolo(4,3-a)-quinoxalines. J Mol Struct (THEOCHEM) 678:1–9

    Article  CAS  Google Scholar 

  • McGill JI (2004) A review of the use of olopatadine in allergic conjunctivitis. Int Ophthalmol 25:171–179

    Article  Google Scholar 

  • Mekenyan Ov, Bonchev D, Trinajstic N (1983) Structural complexity and molecular properties of cyclic systems with acyclic branches. Croat Chem Acta 56:237–261

    CAS  Google Scholar 

  • Pogliani L (1997) Modeling enthalpy and hydration properties of inorganic compounds. Croat Chem Acta 3:803–817

    Google Scholar 

  • Randic M (1975) On characterization of molecular branching. J Am Chem Soc 97:6609–6615

    Article  CAS  Google Scholar 

  • Randic M (1978) On comparability of structures. Chem Phys Lett 55:547–551

    Article  CAS  Google Scholar 

  • Randic M (2001) The connectivity index 25 years after. J Mol Graph Mod 20:19–35

    Article  CAS  Google Scholar 

  • Randic M, Kleiner AF, DeAlba LM (1994) Distance/distance matrices. J Chem Inf Comput Sci 34:277–286

    CAS  Google Scholar 

  • Randic M, Trinajstic N (1994) Isomeric variations in alkanes: Boiling points of nonanes. New J Chem 18:179–189

    CAS  Google Scholar 

  • Rouvray DH (1989) The limits of applicability of topological indices. J Mol Struct (THEOCHEM) 185:187–201

    Article  Google Scholar 

  • Sabljic A, Trinajstic N (1981) Quantitative structure activity relationships: The role of topological indices. Acta Pharm Jugsol 31:189–214

    CAS  Google Scholar 

  • Sharma V, Goswami R, Madan AK (1997) Eccentric connectivity index: A novel highly discriminating topological descriptor for structure property and structure activity studies. J Chem Inf Comput Sci 37:273–282

    Article  CAS  Google Scholar 

  • Subbarao P, Dorman SC, Rerecich T, Watson RM, Gauvreau GM, O’Byrne PM (2005) Protection by budesonide and fluticasone on allergen-induced airway responses after discontinuation of therapy. J Allergy Clin Immunol 115:745–750

    Article  CAS  Google Scholar 

  • Trinajstic N (1992) Chemical Graph Theory. Boca Raton: CRC Press

    Google Scholar 

  • White GJ (1981) Inhibition of oxidative enzymes by anti-allergy drugs. Agents Actions 11:503–509

    Article  CAS  Google Scholar 

  • Wiener H (1947a) Correlation of heat of isomerization and difference in heat of vaporization of isomers among paraffin hydrocarbons. J Am Chem Soc 69:2636–2638

    Google Scholar 

  • Wiener H (1947b) Influence of interatomic forces on paraffin properties. J Chem Phys 15:766–766

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Madan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Madan, A.K. Predicting anti-allergic activity of 4-oxopyrimido [4,5-b]quinolines: Computational approach using topochemical indices. Med Chem Res 16, 88–99 (2007). https://doi.org/10.1007/s00044-007-9011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-007-9011-1

Keywords

Navigation