Skip to main content
Log in

Sharp Global Well-Posedness for the Cubic Nonlinear Schrödinger Equation with Third Order Dispersion

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We consider the initial value problem (IVP) associated to the cubic nonlinear Schrödinger equation with third-order dispersion

$$\begin{aligned} \partial _{t}u+i\alpha \partial ^{2}_{x}u- \partial ^{3}_{x}u+i\beta |u|^{2}u = 0, \quad x,t \in \mathbb R, \end{aligned}$$

for given data in the Sobolev space \(H^s(\mathbb R)\). This IVP is known to be locally well-posed for given data with Sobolev regularity \(s>-\frac{1}{4}\) and globally well-posed for \(s\ge 0\) (Carvajal in Electron J Differ Equ 2004:1–10, 2004). For given data in \(H^s(\mathbb R)\), \(0>s> -\frac{1}{4}\) no global well-posedness result is known. In this work, we derive an almost conserved quantity for such data and obtain a sharp global well-posedness result. Our result answers the question left open in (Carvajal in Electron J Differ Equ 2004:1–10, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Agrawal, G.: Nonlinear Fiber Optics, 4th edn. Elsevier Academic Press, Oxford (2007)

    Google Scholar 

  2. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations. Geom. Funct. Anal. 3(2), 107–156 (1993)

    Article  MathSciNet  Google Scholar 

  3. Carvajal, X.: Local well-posedness for a higher order nonlinear Schrödinger equation in Sobolev spaces of negative indices. Electron. J. Differ. Equ. 2004, 1–10 (2004)

    Google Scholar 

  4. Carvajal, X.: Sharp global well-posedness for a higher order Schrödinger equation. J. Fourier Anal. Appl. 12, 53–73 (2006)

    Article  MathSciNet  Google Scholar 

  5. Carvajal, X.: On the ill-posedness for a nonlinear Schrödinger-Airy equation. Quart. Appl. Math. 71, 267–281 (2013)

    Article  MathSciNet  Google Scholar 

  6. Carvajal, X., Panthee, M.: Nonlinear Schrödinger equations with the third order dispersion on modulation spaces. Partial Differ. Equ. Appl. 3(59), 21 (2022)

    Google Scholar 

  7. Chen, Y., Yan, Z.: Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials. Sci. Rep. 6, 23478 (2016)

    Article  Google Scholar 

  8. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness for Schrödinger equations with derivative. SIAM J. Math. Anal. 33(2001), 649–669 (2001)

    Article  MathSciNet  Google Scholar 

  9. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: A refined global well-posedness result for Schrödinger equations with derivative. SIAM J. Math. Anal. 34, 64–86 (2002)

    Article  MathSciNet  Google Scholar 

  10. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness for periodic and nonperiodic KdV and mKdV. J. Am. Math. Soc. 16, 705–749 (2003)

    Article  Google Scholar 

  11. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Multilinear estimates for periodic KdV equation, and applications. J. Funct. Anal. 211, 173–218 (2004)

    Article  MathSciNet  Google Scholar 

  12. Debussche, A., Tsutsumi, Y.: Quasi-invariance of Gaussian measures transported by the cubic NLS with third-order dispersion on \(\mathbb{T} \). J. Funct. Anal. 281, 109032 (2021)

    Article  MathSciNet  Google Scholar 

  13. Ginibre, J., Tsutsumi, Y., Velo, G.: On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151, 384–436 (1997)

    Article  MathSciNet  Google Scholar 

  14. Hasegawa, A., Kodama, Y.: Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron. 23, 510–524 (1987)

    Article  Google Scholar 

  15. Hasegawa, A., Kodama, Y.: Signal transmission by optical solitons in monomode fiber. Proc. IEEE 69, 1145–1150 (1981)

  16. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527–620 (1993)

    Article  MathSciNet  Google Scholar 

  17. Kodama, Y.: Optical solitons in a monomode fiber. J. Stat. Phys. 39, 597–614 (1985)

    Article  MathSciNet  Google Scholar 

  18. Miyaji, T., Tsutsumi, Y.: Local well-posedness of the NLS equation with third order dispersion in negative Sobolev spaces. Differ. Integr. Equ. 31, 111–132 (2018)

    MathSciNet  Google Scholar 

  19. Miyaji, T., Tsutsumi, Y.: Existence of global solutions and global attractor for the third order Lugiato–Lefever equation on \(\mathbb{T} \). Ann. I. H. Poincaré-AN 34, 1707–1725 (2017)

    Article  MathSciNet  Google Scholar 

  20. Oh, T., Tsutsumi, Y., Tzvetkov, N.: Quasi-invariant Gaussian measures for the cubic nonlinear Schrödinger equation with third-order dispersion. C. R. Acad. Sci. Paris Ser. I(357), 366–381 (2019)

    Article  Google Scholar 

  21. Oikawa, M.: Effect of the third-order dispersion on the nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 62, 2324–2333 (1993)

    Article  Google Scholar 

  22. Rezapour, S., Günay, B., Al, Shamsi H., Kamsing, Nonlaopon K.: On soliton solutions of a modified nonlinear Schrödinger’s equation of third-order governing in optical fibers. Results Phys. 41, 105919 (2022)

    Article  Google Scholar 

  23. Samet, H.C., Benarous, M., Asad-uz-zaman, M., Al, Khawaja U.: Effect of third-order dispersion on the solitonic solutions of the Schrödinger equations with cubic nonlinearity. Adv. Math. Phys. 2014, 323591 (2014)

    Article  Google Scholar 

  24. Takaoka, H.: Well-posedness for the higher order nonlinear Schrödinger equation. Adv. Math. Sci. Appl. 10, 149–171 (2000)

    MathSciNet  Google Scholar 

  25. Tsutsumi Y.: Well-Posedness and Smoothing Effect for Nonlinear Dispersive Equations. https://krieger.jhu.edu/math/wp-content/uploads/sites/62/2018/03/jami2018lecture2abstract1.pdf (2018)

Download references

Acknowledgements

The first author extends thanks to the Department of Mathematics, UNICAMP, Campinas for the kind hospitality where a significant part of this work was developed.

Funding

The second author acknowledges the grants from FAPESP, Brazil (# 2023/06416-6) and CNPq, Brazil (#307790/2020-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Panthee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by Fabio Nicola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvajal, X., Panthee, M. Sharp Global Well-Posedness for the Cubic Nonlinear Schrödinger Equation with Third Order Dispersion. J Fourier Anal Appl 30, 25 (2024). https://doi.org/10.1007/s00041-024-10084-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-024-10084-0

Keywords

Navigation