Skip to main content
Log in

Universal Spectra in \(G\times {\mathbb {Z}}_p\)

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Let G be an additive and finite Abelian group, and p a prime number that does not divide the order of G. We show that if G has the universal spectrum property, then so does \(G\times {\mathbb {Z}}_p\). This is similar to and extends a previous result for cyclic groups using the same dilation trick but on non-cyclic groups as well. Inductively applying this statement on the known list of permissible G one can replace p with any square-free number that does not divide the order of G, and produce new tiling to spectral results in finite Abelian groups generated by at most two elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhattacharya, S.: Periodicity and decidability of tilings of \(\mathbb{Z} ^2\). Am. J. Math. 142, 255–266 (2020)

    Article  Google Scholar 

  2. Coven, E., Meyerowitz, A.: Tiling the integers with translates of one finite set. J. Algebra 212, 161–174 (1999)

    Article  MathSciNet  Google Scholar 

  3. Dutkay, D., Lai, C.: Some reduction of the spectral set conjecture on integers. Math. Proc. Camb. Philos. Soc. 156(1), 123–135 (2014)

    Article  MathSciNet  Google Scholar 

  4. Fallon, T., Kiss, G., Somlai, G.: Spectral sets and tiles in \({\mathbb{Z}}_p^2\times {\mathbb{ Z} }_q^2\). J. Funct. Anal. 282(12), 109472 (2022). https://doi.org/10.1016/j.jfa.2022.109472

  5. Farkas, B., Matolcsi, M., Móra, P.: On Fuglede’s conjecture and the existence of universal spectra. J. Fourier Anal. Appl. 12(5), 483–494 (2006)

    Article  MathSciNet  Google Scholar 

  6. Fuglede, B.: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16, 101–121 (1974)

    Article  MathSciNet  Google Scholar 

  7. Greenfeld, R., Tao, T.: The structure of translational tilings in \({\mathbb{ Z} }^d\). Discrete Anal. 16, 28 (2021)

    Google Scholar 

  8. Greenfeld, R., Tao, T.: A counterexample to the periodic tiling conjecture. Preprint. arXiv: 2211.15847 (2022)

  9. Iosevich, A., Kolountzakis, M.: Periodicity of the spectrum in dimension one. Anal. PDE 6(4), 819–827 (2013)

    Article  MathSciNet  Google Scholar 

  10. Iosevich, A., Mayeli, A., Pakianathan, J.: The Fuglede conjecture holds in \({\mathbb{Z} }_p\times {\mathbb{Z} }_p\). Anal. PDE 10(4), 757–764 (2017)

    Article  MathSciNet  Google Scholar 

  11. Kenyon, R.: Rigidity of planar tilings. Invent. Math. 107, 637–651 (1992)

    Article  MathSciNet  Google Scholar 

  12. Kiss, G., Malikiosis, R., Somlai, G., Vizer, M.: Fuglede’s conjecture holds for cyclic groups of order \(pqrs\). J. Fourier Anal. Appl. 28, 79 (2022)

    Article  MathSciNet  Google Scholar 

  13. Kolountzakis, M., Lagarias, J.: Structure of tilings of the line by a function. Duke Math. J. 82, 653–678 (1996)

    Article  MathSciNet  Google Scholar 

  14. Kolountzakis, M., Matolcsi, M.: Complex Hadamard matrices and the spectral set conjecture. Collect. Math. 57, 281–291 (2006)

    MathSciNet  Google Scholar 

  15. Kolountzakis, M., Matolcsi, M.: Tiles with no spectra. Forum Math. 18(3), 519–528 (2006)

    Article  MathSciNet  Google Scholar 

  16. Łaba, I.: The spectral set conjecture and multiplicative properties of roots of polynomials. J. Lond. Math. Soc. 65(3), 661–671 (2002)

    Article  MathSciNet  Google Scholar 

  17. Łaba, I., Londner, I.: Combinatorial and harmonic-analytic methods for integer tilings. Forum Math. Pi 10(8), 1–46 (2022)

    MathSciNet  Google Scholar 

  18. Łaba, I., Londner, I.: Splitting for integer tilings and the Coven-Meyerowitz tiling conditions. Preprint arXiv: 2207.11809 (2022)

  19. Łaba, I., Londner: The Coven-Meyerowitz tiling conditions for \(3\) odd prime factors. Invent. Math. (2022)

  20. Lagarias, J., Wang, Y.: Tiling the line with translates of one tile. Invent. Math. 124, 341–365 (1996)

    Article  MathSciNet  Google Scholar 

  21. Lagarias, J., Wang, Y.: Spectral sets and factorizations of finite Abelian groups. J. Funct. Anal. 145, 73–98 (1997)

    Article  MathSciNet  Google Scholar 

  22. Lagarias, J., Szabó, S.: Universal spectra and Tijdeman’s conjecture on factorization of cyclic groups. J. Fourier Anal. Appl. 7, 63–70 (2001)

    Article  MathSciNet  Google Scholar 

  23. Lev, N., Matolcsi, M.: The Fuglede conjecture for convex domains is true in all dimensions. Acta Math. 228, 385–420 (2022)

    Article  MathSciNet  Google Scholar 

  24. Malikiosis, R.: On the structure of spectral and tiling subsets of cyclic groups. Forum Math. Sigma 10, 1–42 (2022)

    Article  MathSciNet  Google Scholar 

  25. Matolcsi, M.: Fuglede’s conjecture fails in dimension \(4\). Proc. Am. Math. Soc. 133(10), 3021–3026 (2005)

    Article  MathSciNet  Google Scholar 

  26. McMullen, P.: Convex bodies which tile space by translations. Mathematika 27, 113–121 (1980)

    Article  MathSciNet  Google Scholar 

  27. Sands, A.: Replacement of factors by subgroups in the factorization of Abelian groups. Bull. Lond. Math. Soc. 32(3), 297–304 (2000)

    Article  MathSciNet  Google Scholar 

  28. Shi, R.: Fuglede’s conjecture holds on cyclic groups \({\mathbb{Z}}_{pqr}\). Discrete Anal. 14 (2019). https://doi.org/10.19086/da.10570

  29. Shi, R.: Equi-distribution on planes and spectral set conjecture on \({\mathbb{Z} }_{p^2}\times {\mathbb{Z} }_p\). J. Lond. Math. Soc. 102(2), 1030–1046 (2020)

    Article  MathSciNet  Google Scholar 

  30. Somlai, G.: Spectral sets in \({\mathbb{Z} }_{p^2qr}\) tile. Discrete Anal. 5, 10 (2023)

    MathSciNet  Google Scholar 

  31. Szabó, S.: A type of factorization of finite Abelian groups. Discrete Math. 54, 121–124 (1985)

    Article  MathSciNet  Google Scholar 

  32. Szabó, S., Sands, A.: Factoring Groups into Subsets. CRC Press, Boca Raton (2008)

    Google Scholar 

  33. Tao, T.: Fuglede’s conjecture is false in \(5\) and higher dimensions. Math. Res. Lett. 11(2–3), 251–258 (2004)

    Article  MathSciNet  Google Scholar 

  34. Tijdeman, R.: Decomposition of the integers as a direct sum of two subsets. Number Theory Séminaire de Théorie des Nombres de Paris 1992–3, pp. 261–276. Cambridge University Press, Cambridge (1995)

  35. Zhang, T.: Fuglede’s conjecture holds in \({\mathbb{Z}}_p\times {\mathbb{Z}}_{p^n}\). SIAM J. Discrete Math. 37(2), 1180–1197 (2023). https://doi.org/10.1137/22M1493598

Download references

Funding

Funded by the Jiangsu Education Department, General Program for Natural Science Research in Jiangsu Higher Institutions, with Grant No. 21KJD110001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqi Zhou.

Additional information

Communicated by Stefan Steinerberger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W. Universal Spectra in \(G\times {\mathbb {Z}}_p\). J Fourier Anal Appl 30, 17 (2024). https://doi.org/10.1007/s00041-024-10074-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-024-10074-2

Keywords

Mathematics Subject Classification

Navigation