Asada, K., Fujiwara, D.: On some oscillatory integral transformations in \(L^2(R^n)\). Jpn. J. Math. (N.S.) 4(2), 299–361 (1978)
Article
Google Scholar
Beals, R.M.: \(L^p\) Boundedness of Fourier Integral Operators. Mem. Am. Math. Soc. (264). American Mathematical Society, Providence (1982)
Google Scholar
Bergh, J., Löfström, J.: Interpolation Spaces, An Introduction. Springer, Grundlehren der Mathematischen Wissenschaften (1976)
Book
Google Scholar
Castro, A.J., Israelsson, A., Staubach, W.: Regularity of Fourier integral operators with amplitudes in general Hörmander classes. Anal. Math. Phys. 121, 11 (2021)
MATH
Google Scholar
Cordoba, A.: A note on Bochner–Riesz operators. Duke Math. J. 36(3), 505–511 (1979)
MathSciNet
MATH
Google Scholar
Cordoba, A.: Geometric Fourier analysis. Ann. Inst. Fourier (Grenoble) 32(3), 215–226 (1982)
MathSciNet
Article
Google Scholar
Coriasco, S., Ruzhansky, M.: On the boundedness of Fourier integral operators on \(L^p(\mathbb{R} ^n)\). C. R. Acad. Sci. Paris Ser. I 348, 847–851 (2010)
Article
Google Scholar
Coriasco, S., Ruzhansky, M.: Global \(L^p\) continuity of Fourier integral operators. Trans. Am. Math. Soc. 366(5), 2575–2596 (2014)
Article
Google Scholar
Cuerva, J.G., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, 116. North-Holland, Amsterdam (1985)
MATH
Google Scholar
Dos Santos Ferreira, D., Staubach, W.: Global and Local Regularity of Fourier Integral Operators on Weighted and Unweighted Spaces. Mem. Am. Math. Soc. 229 (2014)
Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics. American Mathematical Society, Providence (2001)
Google Scholar
Éskin, G.I.: Degenerate elliptic pseudo-differential equations of principal type (Russian). Mat. Sb. (N.S.) 82(124), 585–628 (1970)
MathSciNet
Google Scholar
Folland, G.B.: Real Analysis. Modern Techniques and their Applications, Pure and Applied Mathematics. A Wiley-Interscience Publication. Wiley, New York (1984)
Google Scholar
Hörmander, L.: Fourier integral operators, I. Acta Math. 127, 79–183 (1971)
MathSciNet
Article
Google Scholar
Manna, R., Ratnakumar, P.K.: Local Smoothing of Fourier integral operators and hermite functions. In: Georgiev V., Ozawa T., Ruzhansky M., Wirth J. (eds) Advances in Harmonic Analysis and Partial Differential Equations, pp 1–35, Trends in Mathematics. Birkhäuser, Cham. (2020)
Miyachi, A.: On some estimates for the wave equation in \(L^p\) and \(H^p\). J. Fac. Sci. Univ. Tokyo Sect. IA Math 27(2), 331–354 (1980)
MathSciNet
MATH
Google Scholar
Mockenhaupt, G., Seeger, A., Sogge, C.D.: Wave front sets, local smoothing and Bourgain’s circular maximal theorem. Ann. Math. (2) 136(1), 207–218 (1992)
MathSciNet
Article
Google Scholar
Peral, J.: \(L^p\) estimates for the wave equation. J. Funct. Anal. 36, 114–145 (1980)
Article
Google Scholar
Ruzhansky, M., Sugimoto, M.: Global \(L^2\) boundedness theorems for a class of Fourier integral operators. Commun. PDE 31(4–6), 547–569 (2006)
Article
Google Scholar
Seeger, A., Sogge, C.D., Stein, E.M.: Regularity properties of Fourier integral operators. Ann. Math. (2) 134(2), 231–251 (1991)
MathSciNet
Article
Google Scholar
Sogge, C.D.: Fourier Integrals in Classical Analysis, Cambridge Tracts in Math., 105, Cambridge University Press, Cambridge (1993)
Sogge, C.D.: Propagation of singularities and maximal functions in the plane. Invent. Math. 104, 349–376 (1991)
MathSciNet
Article
Google Scholar
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30. Princeton Univeristy Press, Princeton (1970)
Google Scholar
Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Monographs in Harmonic Analysis. III. Princeton University Press, Princeton, NJ (1993)
Google Scholar
Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32. Princeton University Press, Princeton (1971)
Google Scholar