Skip to main content
Log in

Localised Module Frames and Wannier Bases from Groupoid Morita Equivalences

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Following the operator algebraic approach to Gabor analysis, we construct frames of translates for the Hilbert space localisation of the Morita equivalence bimodule arising from a groupoid equivalence between Hausdorff groupoids, where one of the groupoids is étale and with a compact unit space. For finitely generated and projective submodules, we show these frames are orthonormal bases if and only if the module is free. We then apply this result to the study of localised Wannier bases of spectral subspaces of Schrödinger operators with atomic potentials supported on (aperiodic) Delone sets. The noncommutative Chern numbers provide a topological obstruction to fast-decaying Wannier bases and we show this result is stable under deformations of the underlying Delone set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Austad, A., Enstad, U.: Heisenberg modules as function spaces. J. Fourier Anal. Appl. 26, 24 (2020)

    Article  MathSciNet  Google Scholar 

  2. Austad, A., Jakobsen, M.S., Luef, F.: Gabor duality theory for Morita equivalent \(C^*\)-algebras. Int. J. Math. 31(10), 2050073 (2020)

    Article  MathSciNet  Google Scholar 

  3. Beckus, S., Bellissard, J.: Continuity of the spectrum of a field of self-adjoint operators. Ann. Henri Poincaré 17(12), 3425–3442 (2016)

    Article  MathSciNet  Google Scholar 

  4. Beckus, S., Bellissard, J., De Nittis, G.: Spectral continuity for aperiodic quantum systems I. Gen. Theory J. Funct. Anal. 275(11), 2917–2977 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bellissard, J.: Gap labelling theorems for Schrödinger operators. In: Waldschmidt, M., et al. (eds.) From Number Theory to Physics, Chapter 12. Springer, Berlin (1992)

    Google Scholar 

  6. Bellissard, J., Herrmann, D.J.L., Zarrouati, M.: Hulls of aperiodic solids and gap labelling theorems. In: Directions in Mathematical Quasicrystals. Volume 13 of CIRM Monograph Series, pp. 207–259 (2000)

  7. Belmonte, F., Lein, M., Măntoiu, M.: Magnetic twisted actions on general abelian \(C^*\)-algebras. J. Oper. Theory 69(1), 33–58 (2013)

    Article  MathSciNet  Google Scholar 

  8. Benac, M.J., Massey, P.G., Stojanoff, D.: Frames of translates with prescribed fine structure in shift invariant spaces. J. Funct. Anal. 271(9), 2631–2671 (2016)

    Article  MathSciNet  Google Scholar 

  9. Blackadar, B.: \(K\)-Theory for Operator Algebras. Volume 5 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  10. Blackadar, B., Cuntz, J.: Differential Banach algebra norms and smooth subalgebras of \(C^*\)-algebras. J. Oper. Theory 26, 255–282 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Bourne, C., Mesland, B.: Index theory and topological phases of aperiodic lattices. Annales Henri Poincaré 20(6), 1969–2038 (2019)

    Article  MathSciNet  Google Scholar 

  12. Bourne, C., Prodan, E.: Non-commutative Chern numbers for generic aperiodic discrete systems. J. Phys. A 51(23), 235202 (2018)

    Article  MathSciNet  Google Scholar 

  13. Bourne, C., Rennie, A.: Chern numbers, localisation and the bulk-edge correspondence for continuous models of topological phases. Math. Phys. Anal. Geom. 21(3), 16 (2018)

    Article  MathSciNet  Google Scholar 

  14. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, 2nd edn. Birkhäuser/Springer, Cham (2016)

    MATH  Google Scholar 

  15. Cornean, H.D., Monaco, D., Moscolari, M.: Parseval frames of exponentially localized magnetic Wannier functions. Commun. Math. Phys. 371(3), 1179–1230 (2019)

    Article  MathSciNet  Google Scholar 

  16. De Nittis, G., Lein, M.: Exponentially localized Wannier functions in periodic zero flux magnetic fields. J. Math. Phys. 52(11), 112103 (2011)

    Article  MathSciNet  Google Scholar 

  17. Gillaspy, E.: \(K\)-theory and homotopies of 2-cocycles on transformation groups. J. Oper. Theory 73(2), 465–490 (2015)

    Article  MathSciNet  Google Scholar 

  18. Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  19. Gröchenig, K., Ortega-Cerdà, J., Romero, J.L.: Deformation of Gabor systems. Adv. Math. 277, 388–425 (2015)

    Article  MathSciNet  Google Scholar 

  20. Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Am. Math. Soc. 147(697), x+94 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Kellendonk, J.: The local structure of tilings and their integer group of coinvariants. Commun. Math. Phys. 187, 115–157 (1997)

    Article  MathSciNet  Google Scholar 

  22. Khoshkam, M., Skandalis, G.: Regular representation of groupoid \(C^*\)-algebras and applications to inverse semigroups. J. Reine Angew. Math. 546, 47–72 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Kreisel, M.: Gabor frames for quasicrystals, \(K\)-theory, and twisted gap labeling. J. Funct. Anal. 270, 1001–1030 (2016)

    Article  MathSciNet  Google Scholar 

  24. Kuchment, P.: Tight frames of exponentially decaying Wannier functions. J. Phys. A 42(2), 025203 (2009)

    Article  MathSciNet  Google Scholar 

  25. Lu, J., Stubbs, K.: Algebraic localization implies exponential localization in non-periodic insulators. arXiv:2101.02626 (2021)

  26. Ludewig, M., Thiang, G.C.: Good Wannier bases in Hilbert modules associated to topological insulators. J. Math. Phys. 61, 061902 (2020)

    Article  MathSciNet  Google Scholar 

  27. Luef, F.: Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces. J. Funct. Anal. 257(6), 1921–1946 (2009)

    Article  MathSciNet  Google Scholar 

  28. Luef, F.: The Balian-Low theorem and noncommutative tori. Expos. Math. 36(2), 221–227 (2018)

    Article  MathSciNet  Google Scholar 

  29. Marcelli, G., Monaco, D., Moscolari, M., Panati, G.: The Haldane model and its localization dichotomy. Rend. Mat. Appl. (7) 39(2), 307–327 (2018). arXiv:1909.03298

    MathSciNet  MATH  Google Scholar 

  30. Marcelli, G., Moscolari, M., Panati, G.: Localization implies Chern triviality in non-periodic insulators. arXiv:2012.14407 (2020)

  31. Matusiak, E.: Gabor frames for model sets. J. Fourier Anal. Appl. 25(5), 2570–2607 (2019)

    Article  MathSciNet  Google Scholar 

  32. Monaco, D., Panati, G., Pisante, A., Teufel, S.: Optimal decay of Wannier functions in Chern and quantum Hall insulators. Commun. Math. Phys. 359(1), 61–100 (2018)

    Article  MathSciNet  Google Scholar 

  33. Moutuou, E. M., Tu, J.-L.: Equivalence of fell systems and their reduced groupoid \(C^*\)-algebras. arXiv:1101.1235 (2011)

  34. Muhly, P.S., Renault, J., Williams, D.P.: Equivalence and isomorphism for groupoid \(C^{\ast }\)-algebras. J. Oper. Theory 17, 3–22 (1987)

    MathSciNet  MATH  Google Scholar 

  35. Raeburn, I., Williams, D.: Morita Equivalence and Continuous-Trace \(C^*\)-Algebras. Mathematical Surveys and Monographs, vol. 60. American Mathematical Society, Providence, RI, xiv+327 (1998)

  36. Renault, J.: A Groupoid Approach to \(C^*\)-Algebras. Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980)

    Book  Google Scholar 

  37. Schweitzer, L.B.: A short proof that \(M_n(A)\) is local if \(A\) is local and Fréchet. Int. J. Math. 3(4), 581–589 (1992)

    Article  Google Scholar 

  38. Sims, A., Williams, D.P.: Renault equivalence Theorem for reduced groupoid \(C^*\)-algebras. J. Oper. Theory 68(1), 223–239 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Sims, A., Williams, D.P.: An equivalence theorem for reduced Fell bundle \(C^*\)-algebras. N. Y. J. Math. 19, 159–178 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Stubbs, K., Watson, A. B., Lu, J.: Existence and computation of generalized Wannier functions for non-periodic systems in two dimensions and higher. arXiv:2003.06676 (2020)

  41. Stubbs, K., Watson, A.B., Lu, J.: The iterated projection position algorithm for constructing exponentially localized generalized Wannier functions for periodic and non-periodic insulators in two dimensions and higher. Phys. Rev. B 103, 075125 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Franz Luef, Domenico Monaco and Guo Chuan Thiang for valuable feedback on an earlier version of this manuscript. We also thank Giovanna Marcelli, Massimo Moscolari and Gianluca Panati for sharing the results of [29, 30] with us. CB is supported by a JSPS Grant-in-Aid for Early-Career Scientists (No. 19K14548) and thanks the Mathematical Institute, Universiteit Leiden, for hospitality during the conference Noncommutative Geometry, Analysis, and Topological Insulators in February 2020, where this work took shape. Both authors thank the Casa Matematica Oaxaca for hospitality and support during the workshop Topological Phases of Interacting Quantum Systems in June 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Bourne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourne, C., Mesland, B. Localised Module Frames and Wannier Bases from Groupoid Morita Equivalences. J Fourier Anal Appl 27, 69 (2021). https://doi.org/10.1007/s00041-021-09873-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09873-8

Keywords

Mathematics Subject Classification

Navigation