Abstract
Following the operator algebraic approach to Gabor analysis, we construct frames of translates for the Hilbert space localisation of the Morita equivalence bimodule arising from a groupoid equivalence between Hausdorff groupoids, where one of the groupoids is étale and with a compact unit space. For finitely generated and projective submodules, we show these frames are orthonormal bases if and only if the module is free. We then apply this result to the study of localised Wannier bases of spectral subspaces of Schrödinger operators with atomic potentials supported on (aperiodic) Delone sets. The noncommutative Chern numbers provide a topological obstruction to fast-decaying Wannier bases and we show this result is stable under deformations of the underlying Delone set.
Similar content being viewed by others
References
Austad, A., Enstad, U.: Heisenberg modules as function spaces. J. Fourier Anal. Appl. 26, 24 (2020)
Austad, A., Jakobsen, M.S., Luef, F.: Gabor duality theory for Morita equivalent \(C^*\)-algebras. Int. J. Math. 31(10), 2050073 (2020)
Beckus, S., Bellissard, J.: Continuity of the spectrum of a field of self-adjoint operators. Ann. Henri Poincaré 17(12), 3425–3442 (2016)
Beckus, S., Bellissard, J., De Nittis, G.: Spectral continuity for aperiodic quantum systems I. Gen. Theory J. Funct. Anal. 275(11), 2917–2977 (2018)
Bellissard, J.: Gap labelling theorems for Schrödinger operators. In: Waldschmidt, M., et al. (eds.) From Number Theory to Physics, Chapter 12. Springer, Berlin (1992)
Bellissard, J., Herrmann, D.J.L., Zarrouati, M.: Hulls of aperiodic solids and gap labelling theorems. In: Directions in Mathematical Quasicrystals. Volume 13 of CIRM Monograph Series, pp. 207–259 (2000)
Belmonte, F., Lein, M., Măntoiu, M.: Magnetic twisted actions on general abelian \(C^*\)-algebras. J. Oper. Theory 69(1), 33–58 (2013)
Benac, M.J., Massey, P.G., Stojanoff, D.: Frames of translates with prescribed fine structure in shift invariant spaces. J. Funct. Anal. 271(9), 2631–2671 (2016)
Blackadar, B.: \(K\)-Theory for Operator Algebras. Volume 5 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge (1998)
Blackadar, B., Cuntz, J.: Differential Banach algebra norms and smooth subalgebras of \(C^*\)-algebras. J. Oper. Theory 26, 255–282 (1991)
Bourne, C., Mesland, B.: Index theory and topological phases of aperiodic lattices. Annales Henri Poincaré 20(6), 1969–2038 (2019)
Bourne, C., Prodan, E.: Non-commutative Chern numbers for generic aperiodic discrete systems. J. Phys. A 51(23), 235202 (2018)
Bourne, C., Rennie, A.: Chern numbers, localisation and the bulk-edge correspondence for continuous models of topological phases. Math. Phys. Anal. Geom. 21(3), 16 (2018)
Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, 2nd edn. Birkhäuser/Springer, Cham (2016)
Cornean, H.D., Monaco, D., Moscolari, M.: Parseval frames of exponentially localized magnetic Wannier functions. Commun. Math. Phys. 371(3), 1179–1230 (2019)
De Nittis, G., Lein, M.: Exponentially localized Wannier functions in periodic zero flux magnetic fields. J. Math. Phys. 52(11), 112103 (2011)
Gillaspy, E.: \(K\)-theory and homotopies of 2-cocycles on transformation groups. J. Oper. Theory 73(2), 465–490 (2015)
Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, Boston (2001)
Gröchenig, K., Ortega-Cerdà, J., Romero, J.L.: Deformation of Gabor systems. Adv. Math. 277, 388–425 (2015)
Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Am. Math. Soc. 147(697), x+94 (2000)
Kellendonk, J.: The local structure of tilings and their integer group of coinvariants. Commun. Math. Phys. 187, 115–157 (1997)
Khoshkam, M., Skandalis, G.: Regular representation of groupoid \(C^*\)-algebras and applications to inverse semigroups. J. Reine Angew. Math. 546, 47–72 (2002)
Kreisel, M.: Gabor frames for quasicrystals, \(K\)-theory, and twisted gap labeling. J. Funct. Anal. 270, 1001–1030 (2016)
Kuchment, P.: Tight frames of exponentially decaying Wannier functions. J. Phys. A 42(2), 025203 (2009)
Lu, J., Stubbs, K.: Algebraic localization implies exponential localization in non-periodic insulators. arXiv:2101.02626 (2021)
Ludewig, M., Thiang, G.C.: Good Wannier bases in Hilbert modules associated to topological insulators. J. Math. Phys. 61, 061902 (2020)
Luef, F.: Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces. J. Funct. Anal. 257(6), 1921–1946 (2009)
Luef, F.: The Balian-Low theorem and noncommutative tori. Expos. Math. 36(2), 221–227 (2018)
Marcelli, G., Monaco, D., Moscolari, M., Panati, G.: The Haldane model and its localization dichotomy. Rend. Mat. Appl. (7) 39(2), 307–327 (2018). arXiv:1909.03298
Marcelli, G., Moscolari, M., Panati, G.: Localization implies Chern triviality in non-periodic insulators. arXiv:2012.14407 (2020)
Matusiak, E.: Gabor frames for model sets. J. Fourier Anal. Appl. 25(5), 2570–2607 (2019)
Monaco, D., Panati, G., Pisante, A., Teufel, S.: Optimal decay of Wannier functions in Chern and quantum Hall insulators. Commun. Math. Phys. 359(1), 61–100 (2018)
Moutuou, E. M., Tu, J.-L.: Equivalence of fell systems and their reduced groupoid \(C^*\)-algebras. arXiv:1101.1235 (2011)
Muhly, P.S., Renault, J., Williams, D.P.: Equivalence and isomorphism for groupoid \(C^{\ast }\)-algebras. J. Oper. Theory 17, 3–22 (1987)
Raeburn, I., Williams, D.: Morita Equivalence and Continuous-Trace \(C^*\)-Algebras. Mathematical Surveys and Monographs, vol. 60. American Mathematical Society, Providence, RI, xiv+327 (1998)
Renault, J.: A Groupoid Approach to \(C^*\)-Algebras. Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980)
Schweitzer, L.B.: A short proof that \(M_n(A)\) is local if \(A\) is local and Fréchet. Int. J. Math. 3(4), 581–589 (1992)
Sims, A., Williams, D.P.: Renault equivalence Theorem for reduced groupoid \(C^*\)-algebras. J. Oper. Theory 68(1), 223–239 (2012)
Sims, A., Williams, D.P.: An equivalence theorem for reduced Fell bundle \(C^*\)-algebras. N. Y. J. Math. 19, 159–178 (2013)
Stubbs, K., Watson, A. B., Lu, J.: Existence and computation of generalized Wannier functions for non-periodic systems in two dimensions and higher. arXiv:2003.06676 (2020)
Stubbs, K., Watson, A.B., Lu, J.: The iterated projection position algorithm for constructing exponentially localized generalized Wannier functions for periodic and non-periodic insulators in two dimensions and higher. Phys. Rev. B 103, 075125 (2021)
Acknowledgements
The authors thank Franz Luef, Domenico Monaco and Guo Chuan Thiang for valuable feedback on an earlier version of this manuscript. We also thank Giovanna Marcelli, Massimo Moscolari and Gianluca Panati for sharing the results of [29, 30] with us. CB is supported by a JSPS Grant-in-Aid for Early-Career Scientists (No. 19K14548) and thanks the Mathematical Institute, Universiteit Leiden, for hospitality during the conference Noncommutative Geometry, Analysis, and Topological Insulators in February 2020, where this work took shape. Both authors thank the Casa Matematica Oaxaca for hospitality and support during the workshop Topological Phases of Interacting Quantum Systems in June 2019.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bourne, C., Mesland, B. Localised Module Frames and Wannier Bases from Groupoid Morita Equivalences. J Fourier Anal Appl 27, 69 (2021). https://doi.org/10.1007/s00041-021-09873-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00041-021-09873-8