Skip to main content
Log in

Partition of Unity Methods for Signal Processing on Graphs

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Partition of unity methods (PUMs) on graphs are simple and highly adaptive auxiliary tools for graph signal processing. Based on a greedy-type metric clustering and augmentation scheme, we show how a partition of unity can be generated in an efficient way on graphs. We investigate how PUMs can be combined with a local graph basis function (GBF) approximation method in order to obtain low-cost global interpolation or classification schemes. From a theoretical point of view, we study necessary prerequisites for the partition of unity such that global error estimates of the PUM follow from corresponding local ones. Finally, properties of the PUM as cost-efficiency and approximation accuracy are investigated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  2. Cavoretto, R., De Rossi, A.: Adaptive meshless refinement schemes for RBF-PUM collocation. Appl. Math. Lett. 90, 131–138 (2019)

    Article  MathSciNet  Google Scholar 

  3. Cavoretto, R., De Rossi, A.: Error indicators and refinement strategies for solving Poisson problems through a RBF partition of unity collocation scheme. Appl. Math. Comput. 369, 124824 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Cavoretto, R., De Rossi, A., Perracchione, E.: Optimal selection of local approximants in RBF-PU interpolation. J. Sci. Comput. 74, 1–27 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cavoretto, R., De Rossi, A., Mukhametzhanov, M.S., Sergeyev, Y.D.: On the search of the shape parameter in radial basis functions using univariate global optimization methods. J. Global Optim. 79, 305–327 (2021)

    Article  MathSciNet  Google Scholar 

  6. Cheng, C., Jiang, Y., Sun, Q.: Spatially distributed sampling and reconstruction. Appl. Comput. Harm. Anal. 47(1), 109–148 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  8. Erb, W.: Graph Signal Interpolation with Positive Definite Graph Basis Functions. arXiv:1912.02069 (2019)

  9. Erb, W.: Semi-Supervised Learning on Graphs with Feature-Augmented Graph Basis Functions. arXiv:2003.07646 (2020)

  10. Erb, W.: Shapes of uncertainty in spectral graph theory. IEEE Trans. Inf. Theory 67(2), 1291–1307 (2021)

    Article  MathSciNet  Google Scholar 

  11. Fang, Q., Shin, C.E., Sun Q.: Polynomial control on weighted stability bounds and inversion norms of localized matrices on simple graph. To appear in J. Fourier Anal. Appl. (2021), https://doi.org/10.1007/s00041-021-09864-9.

  12. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. World Scientific, Singapore (2007)

    Book  Google Scholar 

  13. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)

    Book  Google Scholar 

  14. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  Google Scholar 

  15. Griebel, M., Schweitzer, M.A.: A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic PDE. SIAM J. Sci. Comp. 22(3), 853–890 (2000)

    Article  MathSciNet  Google Scholar 

  16. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical Society, Boston (2011)

    Book  Google Scholar 

  17. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the \(k\)-center problem. Math. Oper. Res. 10(2), 180–184 (1985)

    Article  MathSciNet  Google Scholar 

  18. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  19. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. in Proc. of the 19th. Intern. Conf. on Machine Learning ICML02, pp. 315–322 (2002)

  20. Larsson, E., Shcherbakov, V., Heryudono, A.: A least squares radial basis function partition of unity method for solving PDEs. SIAM J. Sci. Comput. 39(6), A2538–A2563 (2017)

    Article  MathSciNet  Google Scholar 

  21. Melenk, J.M., Babu\(\check{s}\)ka, I.: The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)

  22. Ortega, A., Frossard, P., Kova\(\check{c}\)evi\(\acute{c}\), J., Moura, J.M.F., Vandergheynst, P.: Graph signal processing: overview, challenges, and applications. Proce. IEEE 106(5), 808–828 (2018)

  23. Pesenson, I.Z.: Sampling by averages and average splines on Dirichlet spaces and on combinatorial graphs. To appear in: Hirn M., et al. editors: Excursions in Harmonic Analysis, Volume 6, book series Applied and Numerical Harmonic Analysis, Birkhäuser-Springer (2021)

  24. Pesenson, I.Z.: Sampling in Paley-Wiener spaces on combinatorial graphs. Trans. Am. Math. Soc. 360(10), 5603–5627 (2008)

    Article  MathSciNet  Google Scholar 

  25. Pesenson, I.Z.: Variational splines and Paley–Wiener spaces on combinatorial graphs. Constr. Approx. 29(1), 1–21 (2009)

    Article  MathSciNet  Google Scholar 

  26. Pesenson, I.Z., Pesenson, M.Z.: Graph signal sampling and interpolation based on clusters and averages. J. Fourier Anal. Appl. 27, 39 (2021). https://doi.org/10.1007/s00041-021-09828-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Rifkin, R., Yeo, G., Poggio, T.: Regularized least-squares classification. Nato Science Series Sub Series III. Comput. Syst. Sci. 190, 131–154 (2003)

    Google Scholar 

  28. Romero, D., Ma, M., Giannakis, G.B.: Kernel-based reconstruction of graph signals. IEEE Trans. Signal Process. 65(3), 764–778 (2017)

    Article  MathSciNet  Google Scholar 

  29. Rossi, R.A., Ahmed, N.K.: The Network Data Repository with Interactive Graph Analytics and Visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015), http://networkrepository.com

  30. Schaback, R., Wendland, H.: Approximation by Positive Definite Kernels. In Advanced Problems in Constructive Approximation, Birkhäuser Verlag, Basel (2003), 203–222

  31. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  32. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. in Proceedings of the 1968 23rd ACM National Conference, ACM’68, New York, NY, USA (1968), 517–524

  33. Shuman, D.I., Ricaud, B., Vandergheynst, P.: Vertex-frequency analysis on graphs. Appl. Comput. Harm. Anal. 40(2), 260–291 (2016)

    Article  MathSciNet  Google Scholar 

  34. Smola, A., Kondor. R.: Kernels and regularization on graphs. In Learning Theory and Kernel Machines. Springer, Berlin Heidelberg, pp. 144–158 (2003)

  35. Stanković, L., Daković, L., Sejdić, E.: Introduction to Graph Signal Processing, pp. 3–108. Springer, In Vertex-Frequency Analysis of Graph Signals (2019)

  36. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  37. Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics, volume 59, SIAM, Philadelphia (1990)

  38. Ward, J.P., Narcowich, F.J., Ward, J.D.: Interpolating splines on graphs for data science applications. Appl. Comput. Harm. Anal. 49(2), 540–557 (2020)

    Article  MathSciNet  Google Scholar 

  39. Wendland, H.: Fast evaluation of radial basis functions: Methods based on partition of unity. In: C.K. Chui et al. (Eds.), Approximation Theory X: Wavelets, Splines, and Applications (2002), 473–483

  40. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the editors and the anonymous referees for insightful comments and suggestions, which gave the chance to significantly improve the quality of the paper. The first two authors acknowledge support from the Department of Mathematics “Giuseppe Peano” of the University of Torino via projects 2020 “Models and numerical methods in approximation, in applied sciences and in life sciences” and “Mathematical methods in computational sciences”. This research has been accomplished within the RITA “ Research ITalian network on Approximation” and the UMI Group TAA “ Approximation Theory and Applications”. The work was partially supported by INdAM-GNCS, and all the authors are members of the INdAM Research group GNCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Erb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavoretto, R., De Rossi, A. & Erb, W. Partition of Unity Methods for Signal Processing on Graphs. J Fourier Anal Appl 27, 66 (2021). https://doi.org/10.1007/s00041-021-09871-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09871-w

Keywords

Navigation