Skip to main content
Log in

A Low Discrepancy Sequence on Graphs

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Many applications such as election forecasting, environmental monitoring, health policy, and graph based machine learning require taking expectation of functions defined on the vertices of a graph. We describe a construction of a sampling scheme analogous to the so called Leja points in complex potential theory that can be proved to give low discrepancy estimates for the approximation of the expected value by the impirical expected value based on these points. In contrast to classical potential theory where the kernel is fixed and the equilibrium distribution depends upon the kernel, we fix a probability distribution and construct a kernel (which represents the graph structure) for which the equilibrium distribution is the given probability distribution. Our estimates do not depend upon the size of the graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andrievskii, V.V., Blatt, H.-P.: Discrepancy of Signed Measures and Polynomial Approximation. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  2. Anis, A., Gadde, A., Ortega, A.: Efficient sampling set selection for bandlimited graph signals using graph spectral proxies. IEEE Trans. Signal Process. 64(14), 3775–3789 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bermanis, A., Averbuch, A., Coifman, R.R.: Multiscale data sampling and function extension. Appl. Comput. Harmon. Anal. 34(1), 15–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blatt, H.-P.: On the distribution of simple zeros of polynomials. J. Approx. Theory 69(3), 250–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blatt, H.-P., Mhaskar, H.N.: A general discrepancy theorem. Arkiv för Matematik 31(2), 219–246 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brown, L.: Sequences of well-distributed vertices on graphs and spectral bounds on optimal transport. J. Fourier Anal. Appl. 27(2), 1–27 (2021)

    Article  MathSciNet  Google Scholar 

  7. Brualdi, R.A.: The DAD theorem for arbitrary row sums. Proc. Am. Math. Soc. 45(2), 189–194 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, S., Varma, R., Sandryhaila, A., Kovačević, J.: Discrete signal processing on graphs: sampling theory. IEEE Trans. Signal Process. 63(24), 6510–6523 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chung, F.R.K.: Spectral GraphTheory, vol. 92. American Mathematical Soc., Providence (1997)

    Google Scholar 

  10. Cloninger, A., Roy, B., Riley, C., Krumholz, H.M.: People mover’s distance: class level geometry using fast pairwise data adaptive transportation costs. Appl. Comput. Harmon. Anal. 47(1), 248–257 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Marchi, S.: On Leja sequences: some results and applications. Appl. Math. Comput. 152(3), 621–647 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  13. Dwivedi, R., Feldheim, O.N., Gurel-Gurevich, O., Ramdas, A.: The power of online thinning in reducing discrepancy. Probab. Theory Relat. Fields 174(1–2), 103–131 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erdős, P., Turán, P.: On the uniformly-dense distribution of certain sequences of points. Ann. Math. 41, 162–173 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. Software 21(11), 1129–1164 (1991)

    Google Scholar 

  16. Fuglede, B.: On the theory of potentials in locally compact spaces. Acta Mathematica 103(3–4), 139–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gayo-Avello, D.: A meta-analysis of state-of-the-art electoral prediction from twitter data. Soc. Sci. Comput. Rev. 31(6), 649–679 (2013)

    Article  Google Scholar 

  18. Götz, M.: On the distribution of Leja-Górski points. J. Comput. Anal. Appl. 3(3), 223–241 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Jin, L., Chen, Y., Hui, P., Ding, C., Wang, T., Vasilakos, A. V., Deng, B., Li, X.: Albatross sampling: robust and effective hybrid vertex sampling for social graphs. In: Proceedings of the 3rd ACM international workshop on MobiArch, pp. 11–16 (2011)

  20. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of ICLR (2017)

  21. Knight, P.A.: The sinkhorn-knopp algorithm: convergence and applications. SIAM J. Matrix Anal. Appl. 30(1), 261–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krause, A., Leskovec, J., Guestrin, C., VanBriesen, J., Faloutsos, C.: Efficient sensor placement optimization for securing large water distribution networks. J. Water Resour. Plan. Manag. 134(6), 516–526 (2008)

    Article  Google Scholar 

  23. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Courier Corporation. Wiley, New York (2012)

    Google Scholar 

  24. Landa, B., Coifman, R.R., Kluger, Y.: Doubly stochastic normalization of the gaussian kernel is robust to heteroskedastic noise. SIAM J. Math. Data Sci. 3(1), 388–413 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Landkof, N.S.: Foundations of Modern Potential Theory, vol. 180. Springer, New York (1972)

    Book  MATH  Google Scholar 

  26. Leja, F.: Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme. Annales Polonici Mathematici 1(4), 8–13 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  27. Linderman, G., Steinerberger, S.: Numerical integration on graphs: where to sample and how to weigh. Math. Comput. 89(324), 1933–1952 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lu, J., Sachs, M., Steinerberger, S.: Quadrature points via heat kernel repulsion. Construct. Approx. 51(1), 27–48 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marshall, N.F., Coifman, R.R.: Manifold learning with bi-stochastic kernels. IMA J. Appl. Math. 84(3), 455–482 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Mhaskar, H.N.: Weighted polynomials, radial basis functions and potentials on locally compact spaces. Numer. Funct Anal Optim. 11(9–10), 987–1017 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mhaskar, H.N.: On the tractability of multivariate integration and approximation by neural networks. J. Complex. 20(4), 561–590 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mhaskar, H.N.: Dimension independent bounds for general shallow networks. Neural Netw. 123, 142–152 (2020)

    Article  Google Scholar 

  33. Nazi, A., Zhou, Z., Thirumuruganathan, S., Zhang, N., Das, G.: Walk, not wait: faster sampling over online social networks. Proc. VLDB Endow. 8(6), 678–689 (2015)

    Article  Google Scholar 

  34. Ohtsuka, M., et al.: On potentials in locally compact spaces. J. Sci. Hiroshima Univ. Ser. AI (Math.) 25(2), 135–352 (1961)

    MathSciNet  MATH  Google Scholar 

  35. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab (1999)

  36. Pesenson, I.: Sampling in paley-wiener spaces on combinatorial graphs. Trans. Am. Math. Soc. 360(10), 5603–5627 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pritsker, I.E.: Equidistribution of points via energy. Arkiv för Matematik 49(1), 149–173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Puy, G., Tremblay, N., Gribonval, R., Vandergheynst, P.: Random sampling of bandlimited signals on graphs. Appl. Comput. Harmon. Anal. 44(2), 446–475 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sakiyama, A., Tanaka, Y., Tanaka, T., Ortega, A.: Eigendecomposition-free sampling set selection for graph signals. IEEE Trans. Signal Process. 67(10), 2679–2692 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sears, L.E., Agrawal, S., Sidney, J.A., Castle, P.H., Rula, E.Y., Coberley, C.R., Witters, D., Pope, J.E., Harter, J.K.: The well-being 5: development and validation of a diagnostic instrument to improve population well-being. Popul. Health Manag. 17(6), 357–365 (2014)

    Article  Google Scholar 

  41. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Google Scholar 

  42. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math. 21(2), 343–348 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  43. Smith, L.M., Zhu, L., Lerman, K., Kozareva, Z.: The role of social media in the discussion of controversial topics. In: Proceedings of the 2013 International Conference on Social Computing, pp. 236–243. IEEE (2013)

  44. Steinerberger, S.: Generalized designs on graphs: sampling, spectra, symmetries. J. Graph Theory 93(2), 253–267 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tanaka, Y., Eldar, Y.C., Ortega, A., Cheung, G.: Sampling signals on graphs: from theory to applications. IEEE Signal Process. Mag. 37(6), 14–30 (2020)

    Article  Google Scholar 

  46. Vahidian, S., Mirzasoleiman, B., Cloninger, A.: Coresets for estimating means and mean square error with limited greedy samples. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence, pp. 350–359. PMLR (2020)

  47. Wang, X., Hickernell, F.J.: Randomized halton sequences. Math. Comput. Modell. 32(7–8), 887–899 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world’’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  49. Wu, Y., Xu, Y., Singh, A., Yang, Y., Dubrawski, A.: Active learning for graph neural networks via node feature propagation. arXiv:1910.07567 (2019)

  50. Zhu, L., Galstyan, A., Cheng, J., Lerman, K.: Tripartite graph clustering for dynamic sentiment analysis on social media. In: Proceedings of the 2014 ACM SIGMOD international conference on Management of data, pp. 1531–1542 (2014)

Download references

Acknowledgements

The work of AC was supported in part by NSF DMS Grants 2012266, 1819222, and Sage Foundation Grant 2196. The work of HNM is supported in part NSF DMS Grant 2012355 and ARO Grant W911NF2110218. We thank Professors Percus at Claremont Graduate University for his help in securing the Proposition data set, which was sent to us by Dr. Linhong Zhu at USC Information Sciences Institute in Marina Del Ray, California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. N. Mhaskar.

Additional information

Communicated by Isaac Pesenson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cloninger, A., Mhaskar, H.N. A Low Discrepancy Sequence on Graphs. J Fourier Anal Appl 27, 76 (2021). https://doi.org/10.1007/s00041-021-09865-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09865-8

Keywords

Navigation