Skip to main content
Log in

Sequences of Well-Distributed Vertices on Graphs and Spectral Bounds on Optimal Transport

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Given a graph \(G=(V,E)\), suppose we are interested in selecting a sequence of vertices \((x_j)_{j=1}^n\) such that \(\left\{ x_1, \dots , x_k\right\} \) is ‘well-distributed’ uniformly in k. We describe a greedy algorithm motivated by potential theory and corresponding developments in the continuous setting. The algorithm performs nicely on graphs and may be of use for sampling problems. We can interpret the algorithm as trying to greedily minimize a negative Sobolev norm; we explain why this is related to Wasserstein distance by establishing a purely spectral bound on the Wasserstein distance on graphs that mirrors R. Peyre’s estimate in the continuous setting. We illustrate this with many examples and discuss several open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Beltran, C., Corral, N., Criado del Rey, J.: Discrete and continuous green energy on compact manifolds. J. Approx. Theory 237, 160–185 (2019)

    Article  MathSciNet  Google Scholar 

  2. Bialas-Ciez, L., Calvi, J.-P.: Pseudo Leja sequences. Ann. Math. 191, 53–75 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Brauchart, J.: Optimal logarithmic energy points on the unit sphere. Math. Comp. 77, 1599–1613 (2008)

    Article  MathSciNet  Google Scholar 

  4. Brown, L., Steinerberger, S.: On the Wasserstein distance between classical sequences and the Lebesgue measure. Trans. Am. Math. Soc. 373, 8943–8962 (2020)

    Article  MathSciNet  Google Scholar 

  5. Brown, L., Steinerberger, S.: Positive-definite Functions, exponential sums and the greedy algorithm: a curious phenomenon. J. Complex. (2020)

  6. Calvetti, D., Reichel, L., Sorensen, D.: An implicitly restarted Lanczos method for large symmetric eigenvalue problems. Electron. Trans. Numer. Anal. 2, 1–21 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Carroll, T., Massaneda, X., Ortega-Cerda, J.: An enhanced uncertainty principle for the Vaserstein distance. Bull. Lond. Math. Soc. 52, 1158–1173 (2020)

    Article  MathSciNet  Google Scholar 

  8. Chung, F.: Spectral Graph Theory, CBMS Regional Conference Series in Mathematics 92. American Mathematical Society, Providence (1997)

    Google Scholar 

  9. Dahlberg, B.: Regularity properties of Riesz potentials. Indiana Univ. Math. J. 28, 257–268 (1979)

    Article  MathSciNet  Google Scholar 

  10. Dick, J., Pillichshammer, F.: Digital nets and sequences. Cambridge University Press, Cambridge, Discrepancy theory and quasi-Monte Carlo integration (2010)

  11. Edrei, A.: Sur les déterminants récurrents et les singularités d’une fonction donnée par son développement de Taylor. Compos. Math. 7, 20–88 (1940)

    MATH  Google Scholar 

  12. Erdős, P., Turán, P.: On a problem in the theory of uniform distribution. I. Nederl. Akad. Wetensch. 51, 1146–1154 (1948)

    MathSciNet  MATH  Google Scholar 

  13. Erdős, P., Turán, P.: On a problem in the theory of uniform distribution. II. Nederl. Akad. Wetensch. 51, 1262–1269 (1948)

    MathSciNet  MATH  Google Scholar 

  14. Grigor’yan, A.: Introduction to Analysis on Graphs, University Lecture Series 71. American Mathematical Society, Providence (2018)

    Book  Google Scholar 

  15. Hardin, D., Saff, E.: Discretizing manifolds via minimum energy points. Not. Amer. Math, Soc (2004)

  16. Hu, P., Lau, W. C.: A survey and Taxonomy of Graph Sampling, arXiv:1308.5865 (2013)

  17. Kantorovich, L.V.: On the translocation of masses. J. Math. Sci. 133, 1381–1382 (2006)

    Article  MathSciNet  Google Scholar 

  18. Koksma, J.: Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo 1, Mathematica B (Zutphen) 11, 7–11 (1942/43)

  19. Leja, F.: Sur certaines suites liées aux ensembles plans et leur application ‘a la représentation conforme. Ann. Pol. Math. 4, 8–13 (1957)

    Article  MathSciNet  Google Scholar 

  20. Linderman, G., Steinerberger, S.: Numerical Integration on Graphs: where to sample and how to weigh. Math. Comp. 89, (2020)

  21. López, G.A., Saff, E.B.: Asymptotics of greedy energy points. Math. Comp. 79(272), 2287–2316 (2010)

    Article  MathSciNet  Google Scholar 

  22. De Marchi, S., Elefante, G.: Quasi-Monte Carlo integration on manifolds with mapped low-discrepancy points and greedy minimal Riesz s-energy points. Appl. Numer. Math. 127, 110–124 (2018)

    Article  MathSciNet  Google Scholar 

  23. Marzo, J., Mas, A.: Discrepancy of Minimal Riesz Energy Points, arXiv:1907.04814 (2019)

  24. Pausinger, F.: Greedy energy minimization can count in binary: point charges and the van der Corput sequence. Ann. Math. 200, 165–186 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Pesenson, I.: Sampling in Paley-Wiener spaces on combinatorial graphs. Trans. Am. Math. Soc. 360, 5603–5627 (2010)

    Article  MathSciNet  Google Scholar 

  26. Pesenson, I., Pesenson, M.: Sampling, filtering and sparse approximations on combinatorial graphs. J. Fourier Anal. Appl. 16, 921–942 (2010)

    Article  MathSciNet  Google Scholar 

  27. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach. Learn. 11(5–6), 355–607 (2019)

    Article  Google Scholar 

  28. Peyre, R.: Comparison between \(W_2\) distance and \(\dot{H}^{-1}\) norm, and localization of Wasserstein distance, ESAIM: COCV 24, 1489–1501 (2018)

  29. Reichel, L.: Newton interpolation at Leja points. BIT 30, 332–346 (1990)

    Article  MathSciNet  Google Scholar 

  30. Reichel, L.: The Application of Leja Points to Richardson Iteration and Polynomial Preconditioning. Linear Algebra Appl. 154–156, 389–414 (1991)

    Article  MathSciNet  Google Scholar 

  31. Saff, E., Totik, V.: Logarithmic Potentials with External Fields. Springer, New York (2013)

    MATH  Google Scholar 

  32. Schmidt, W.M.: Irregularities of distribution. VII. Acta Arith. 21, 45–50 (1972)

    Article  MathSciNet  Google Scholar 

  33. Shuman, D., Narang, S., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  34. Steinerberger, S.: Wasserstein Distance, Fourier Series and Applications, arXiv:1803.08011 (2018)

  35. Steinerberger, S.: Dynamically Defined Sequences with Small Discrepancy, arXiv:1902.03269 (2019)

  36. Steinerberger, S.: Polynomials with Zeros on the Unit Circle: Regularity of Leja Sequences, arXiv:2006.10708 (2020)

  37. Thomson, J. J.: On the Structure of the Atom: an Investigation of the Stability and Periods of Oscillation of a number of Corpuscles arranged at equal intervals around the Circumference of a Circle; with Application of the Results to the Theory of Atomic Structure, Philosophical Magazine Series 6, Volume 7, Number 39, 237–265 (1904)

  38. Vasershtein, L.N.: Markov processes on a countable product space describing large systems of automata. Probl. Peredavci Inf. 3, 64–72 (1969)

    MathSciNet  Google Scholar 

  39. Villani, C.: Topics in Optimal Transportation, Graduate Studies in Mathematics. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Brown.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is part of the author’s PhD thesis at Yale University and has been partially supported by NSF (DMS-1763179)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, L. Sequences of Well-Distributed Vertices on Graphs and Spectral Bounds on Optimal Transport . J Fourier Anal Appl 27, 36 (2021). https://doi.org/10.1007/s00041-021-09838-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09838-x

Keywords

Mathematics Subject Classification

Navigation