Skip to main content
Log in

Strichartz Estimates and Fourier Restriction Theorems on the Heisenberg Group

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper is dedicated to the proof of Strichartz estimates on the Heisenberg group \({\mathop {\mathbb H}\nolimits }^d\) for the linear Schrödinger and wave equations involving the sublaplacian. The Schrödinger equation on \({\mathop {\mathbb H}\nolimits }^d\) is an example of a totally non-dispersive evolution equation: for this reason the classical approach that permits to obtain Strichartz estimates from dispersive estimates is not available. Our approach, inspired by the Fourier transform restriction method initiated in Tomas (Bull Am Math Soc 81: 477–478, 1975), is based on Fourier restriction theorems on \({\mathop {\mathbb H}\nolimits }^d\), using the non-commutative Fourier transform on the Heisenberg group. It enables us to obtain also an anisotropic Strichartz estimate for the wave equation, for a larger range of indices than was previously known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Similar Strichartz estimates hold in a Sobolev framework, with adapted indices.

  2. The variable Y is called the horizontal variable, while the variable s is known as the vertical variable.

  3. The function \(\Theta ^{(0)}_\lambda \) corresponds to the function \(\Theta _\lambda \) given by (1.13).

  4. Given \(T:M\rightarrow N\) and \(\mu \) measure on M we can define a measure \(T_{\sharp }\mu \) on N as \(T_{\sharp }\mu (A)=\mu (T^{-1}(A))\).

  5. Where \(\psi (-\Delta _{\mathop {\mathbb H}\nolimits }) \) is defined by the functional calculus of the self-adjoint operator \(-\Delta _{\mathop {\mathbb H}\nolimits }\).

  6. We refer to [7] for the definition of \({\mathcal S}(\widehat{\mathop {\mathbb H}\nolimits }^d)\).

  7. Where of course \( (f \circ \tau _{(\tau , w)})(t, v)= f(t+\tau , w \cdot v)\).

References

  1. Agrachev, A., Boscain, U., Gauthier, J.P., Rossi, F.: The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256, 2621–2655 (2009)

    Article  MathSciNet  Google Scholar 

  2. Anker, J.-P., Pierfelice, V.: Nonlinear Schrödinger equation on real hyperbolic spaces. Ann. Inst. H. Poincaré (C) Non Linear Anal., 26, 1853–1869 (2009)

  3. Askey, R., Waigner, S.: Mean convergence of expansions in Laguerre and Hermite series. Am. J. Math. 87, 695–708 (1965)

    Article  MathSciNet  Google Scholar 

  4. Bahouri, H., Chemin, J.-Y.: Équations d’ondes quasilinéaires et inégalités de Strichartz. Am. J. Math. 121, 1337–1377 (1999)

    Article  Google Scholar 

  5. Bahouri, H., Chemin, J.-Y.: Microlocal Analysis, Bilinear Estimates and Cubic Quasilinear Wave Equation, pp. 93–142. Bulletin de la Société Mathématique de France, Astérisque (2003)

    MATH  Google Scholar 

  6. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Applications to Nonlinear Partial Differential Equations. Grundl. Math. Wiss., vol. 343, Spinger, New York (2011)

  7. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier transform of tempered distributions on the Heisenberg group. Ann. Henri Lebesgue 1, 1–45 (2018)

    Article  MathSciNet  Google Scholar 

  8. Bahouri, H., Chemin, J.-Y., Danchin, R.: A frequency space for the Heisenberg group. Ann. l’Inst. Fourier 69, 365–407 (2019)

    Article  MathSciNet  Google Scholar 

  9. Bahouri, H., Fermanian-Kammerer, C., Gallagher, I.: Dispersive estimates for the Schrödinger operator on step 2 stratified Lie groups. Anal. PDE 9, 545–574 (2016)

    Article  MathSciNet  Google Scholar 

  10. Bahouri, H., Fermanian-Kammerer, C., Gallagher, I.: Phase-space analysis and pseudo-differential calculus on the Heisenberg group. Astérisque, Bulletin de la Société Mathématique de France, vol. 340 (2012)

  11. Bahouri, H., Gallagher, I.: Paraproduit sur le groupe de Heisenberg et applications. Rev. Mat. Iberoam. 17(1), 69–105 (2001)

    Article  MathSciNet  Google Scholar 

  12. Bahouri, H., Gérard, P., Xu, C.-J.: Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg. J. d’Anal. Math. 82, 93–118 (2000)

    Article  Google Scholar 

  13. Bernicot, F., Ouhabaz, E.M.: Restriction estimates via the derivatives of the heat semigroup and connection with dispersive estimates. Math. Res. Lett. 20, 1047–1058 (2013)

    Article  MathSciNet  Google Scholar 

  14. Bernicot, F., Samoyeau, V.: Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(17), 969–1029 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Bourgain, J.: A remark on Schrödinger operators. Israel J. Math. 77, 1–16 (1992)

    Article  MathSciNet  Google Scholar 

  16. Bourgain, J.: Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity. Int. Math. Res. Notices 5, 253–283 (1998)

    Article  Google Scholar 

  17. Bourgain, J.: Some new estimates on oscillatoryon integrals, Essays on Fourier Analysis in Honor of Elias M. Stein. Princeton Math 42, 83–112 (1995)

    Google Scholar 

  18. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Geom. Funct. Anal. 3, 107–156 (1993)

    Article  MathSciNet  Google Scholar 

  19. Burq, N., Gérard, P., Tzvetkov, N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Am. J. Math. 126, 569–605 (2004)

    Article  Google Scholar 

  20. Casarino, V., Ciatti, P.: A restriction theorem for Métivier groups. Adv. Math. 245, 52–77 (2013)

    Article  MathSciNet  Google Scholar 

  21. Casarino, V., Ciatti, P.: Restriction estimates for the free two step nilpotent group on three generators. arXiv:1704.07876 (2017)

  22. Cazenave, T.: Equations de Schrödinger non linéaires en dimension deux. Proc. R Soc. Edinb. Sect. A 84, 327–346 (1979)

    Article  Google Scholar 

  23. Christ, M., Kieslev, A.: Maximal operators associated to filtrations. J. Funct. Anal. 179, 409–425 (2001)

    Article  MathSciNet  Google Scholar 

  24. Corwin, L.-J., Greenleaf, F.-P.: Representations of Nilpotent Lie Groups and Their Applications, Part 1: Basic Theory and Examples. Cambridge Studies in Advanced Mathematics, vol. 18. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  25. Del Hierro, M.: Dispersive and Strichartz estimates on H-type groups. Studia Math 169, 1–20 (2005)

    Article  MathSciNet  Google Scholar 

  26. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.-G.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  27. Faraut, J., Harzallah, K.: Deux Cours d’Analyse Harmonique. École d’Été d’analyse harmonique de Tunis. Progress in Mathematics, Birkhäuser (1984)

    MATH  Google Scholar 

  28. Fefferman, C.: Inequalities for strongly singular convolution operators. Acta Math. 124, 9–36 (1970)

    Article  MathSciNet  Google Scholar 

  29. Gassot, L.: On the radially symmetric traveling waves for the Schrödinger equation on the Heisenberg group. arXiv:1904.07010. Pure Appl. Anal

  30. Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Math. 139, 95–153 (1977)

    Article  MathSciNet  Google Scholar 

  31. Ginibre, J., Velo, G.: Generalized Strichartz inequalities for the wave equations. J. Funct. Anal. 133, 50–68 (1995)

    Article  MathSciNet  Google Scholar 

  32. Howe, R.: Quantum mechanics and partial differential equations. J. Funct. Anal. 38, 188–254 (1980)

    Article  MathSciNet  Google Scholar 

  33. Hulanicki, A.: A functional calculus for Rockland operators on nilpotent Lie groups. Studia Math. 78, 253–266 (1984)

    Article  MathSciNet  Google Scholar 

  34. Ivanovici, O., Lebeau, G., Planchon, F.: Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case. Ann. Math. 180, 323–380 (2014)

    Article  MathSciNet  Google Scholar 

  35. Liu, H., Song, M.: A restriction theorem for the H-type groups. Proc. Am. Math. Soc. 139, 2713–2720 (2011)

    Article  MathSciNet  Google Scholar 

  36. Liu, H., Song, M.: A restriction theorem for Grushin operators. Front. Math. China 11, 365–375 (2016)

    Article  MathSciNet  Google Scholar 

  37. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  38. Müller, D.: A restriction theorem for the Heisenberg group. Ann. Math. 131, 567–587 (1990)

    Article  MathSciNet  Google Scholar 

  39. Nachman, A.I.: The wave equation on the Heisenberg group. Commun. Part. Differ. Equ. 7, 675–714 (1982)

    Article  MathSciNet  Google Scholar 

  40. Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  41. Stein, E.M.: Harmonic Analysis: Real-Variable Methods. Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  42. Strichartz, R.: Restriction Fourier transform of quadratic surfaces and decay of solutions of the wave equations. Duke Math. J. 44, 705–714 (1977)

    Article  MathSciNet  Google Scholar 

  43. Tao, T.: Some recent progress on the restriction conjecture, Fourier Analysis and Convexity. Appl. Numer. Harmon. Anal, pp. 217–243. Birkhauser, Boston (2004)

    Book  Google Scholar 

  44. Tataru, D.: Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Am. J. Math. 122, 349–376 (2000)

    Article  MathSciNet  Google Scholar 

  45. Tomas, P.A.: A restriction theorem for the Fourier transform. Bull. Am. Math. Soc. 81, 477–478 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Gallagher.

Additional information

Communicated by Fulvio Ricci.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of a technical result

We have used the following lemma due to Müller (see [38]), whose proof we sketch below.

Lemma 5.4

Defining for f, g in \({\mathcal S}(T^\star {\mathop {\mathbb R}\nolimits }^d)\) and \(\lambda \) in \({\mathop {\mathbb R}\nolimits }\setminus \{0\}\) the \(\lambda \)-twisted convolution

$$\begin{aligned} (f \star _\lambda g )(Y)\buildrel \hbox { def}\over =\int _{T^\star {\mathop {\mathbb R}\nolimits }^d} f(Y-w) g(w) e^{2i\lambda \sigma (Y,w)}dw\, , \end{aligned}$$
(A.1)

with \(\sigma \) defined in (1.9), the following estimate holds: there exists a positive constant \(C_{d}\) such that

$$\begin{aligned} \Vert f \star _\lambda \widetilde{\mathcal W}(\ell ,\lambda ,\cdot ) \Vert _{L^{p}(T^\star {\mathop {\mathbb R}\nolimits }^d)}\le C_{d} \, |\lambda |^{- \frac{2d}{p'}}\, \ell ^ {(d-1)(1-\frac{2}{p'})}\, \Vert f \Vert _{L^{p}(T^\star {\mathop {\mathbb R}\nolimits }^d)}\, , \end{aligned}$$
(A.2)

for all \(1\le p \le 2\) and all integers \(\ell \ge 1\), where the function \( \widetilde{\mathcal W}(\ell ,\lambda ,Y)\) is defined by (3.13).

Proof of Lemma 5.4

Let us start by establishing that for f, g in \({\mathcal S}(T^\star {\mathop {\mathbb R}\nolimits }^d)\) and \(1\le p \le 2\), the following estimate holds:

$$\begin{aligned} \Vert f \star _\lambda g \Vert _{L^{p'}(T^\star {\mathop {\mathbb R}\nolimits }^d)}\le C_{p,d} \, |\lambda |^{- \frac{d}{p'}} \, \Vert f \Vert _{L^{p}(T^\star {\mathop {\mathbb R}\nolimits }^d)} \Vert g \Vert ^{\frac{2}{p'}} _{L^{2}(T^\star {\mathop {\mathbb R}\nolimits }^d)} \Vert g \Vert ^{1-\frac{2}{p'}} _{L^{\infty }(T^\star {\mathop {\mathbb R}\nolimits }^d)}\, . \end{aligned}$$

By definition,

$$\begin{aligned} (f \star _\lambda g )(Y)= \int _{T^\star {\mathop {\mathbb R}\nolimits }^d} f(Y-w) g(w) e^{2i\lambda \sigma (Y,w)}dw\, , \end{aligned}$$

which easily implies by Young’s inequalities that

$$\begin{aligned} \Vert f \star _\lambda g \Vert _{L^{\infty }(T^\star {\mathop {\mathbb R}\nolimits }^d)}\le \Vert f \Vert _{L^{1}(T^\star {\mathop {\mathbb R}\nolimits }^d)} \Vert g \Vert _{L^{\infty }(T^\star {\mathop {\mathbb R}\nolimits }^d)}\, . \end{aligned}$$

Therefore invoking the method of real interpolation, we are reduced to showing that

$$\begin{aligned} \Vert f \star _\lambda g \Vert _{L^{2}(T^\star {\mathop {\mathbb R}\nolimits }^d)}\le C_{d} \, |\lambda |^{- \frac{d}{2}} \, \Vert f \Vert _{L^{2}(T^\star {\mathop {\mathbb R}\nolimits }^d)} \Vert g \Vert _{L^{2}(T^\star {\mathop {\mathbb R}\nolimits }^d)}\, , \end{aligned}$$

and this follows by an easy dilation argument from the well-known fact that \((L^2(T^\star {\mathop {\mathbb R}\nolimits }^d), \star _1)\) is a Hilbert algebra (see for instance [32]).

Let us now focus on Estimate (A.2). We first recall that

$$\begin{aligned} \widetilde{\mathcal W}(\ell ,\lambda ,Y) = \sum _{|n|= \ell } {\mathcal L}_n(|\lambda |^{\frac{1}{2}} \, Y)\, , \end{aligned}$$

where for \(Z=(Z_1, \ldots , Z_d)\) in \(T^\star {\mathop {\mathbb R}\nolimits }^d\), we denote \({\mathcal L}_n(Z)= e^{-|Z|^2} \Pi ^d_{j=1} L_ {n_j}( 2 |Z_j|)\) with \(L_ {n_j}\) the Laguerre polynomial of order \(n_j\) and type 0.

Define now for \(n \in \mathop {\mathbb N}\nolimits ^d\) the operator \(T_n\) on \(L^{2}(T^\star {\mathop {\mathbb R}\nolimits }^d)\) by

$$\begin{aligned} T_n f\buildrel \hbox { def}\over =f \star _\lambda {\mathcal L}_n(|\lambda |^{\frac{1}{2}} \cdot )\, ,\end{aligned}$$
(A.3)

so that

$$\begin{aligned} Tf= f \star _\lambda \widetilde{\mathcal W}(\ell ,\lambda ,\cdot )= \sum _{|n|= \ell } T_n f \, . \end{aligned}$$
(A.4)

Then using the fact that the Laguerre polynomials \((L_k)_{k \in \mathop {\mathbb N}\nolimits }\) are pairwise orthogonal on \([0, \infty [\) with respect to the measure \(e^{-x} dx\), we infer that the family of operators \((T_n)_{|n|= \ell }\) is also pairwise orthogonal, and thus denoting by \( \Vert T \Vert \) the norm of T defined by (A.4) as an operator on \(L^{2}(T^\star {\mathop {\mathbb R}\nolimits }^d)\), we can conclude that

$$\begin{aligned} \Vert T \Vert _{{\mathcal L}(L^2(T^\star {\mathop {\mathbb R}\nolimits }^d))} = \max _{|n|= \ell }\Vert T_n \Vert _{{\mathcal L}(L^2(T^\star {\mathop {\mathbb R}\nolimits }^d))} \, .\end{aligned}$$
(A.5)

Since \(\Vert {\mathcal L}_n(|\lambda |^{\frac{1}{2}} \cdot )\Vert _{L^2(T^\star {\mathop {\mathbb R}\nolimits }^d)} = |\lambda |^{- \frac{d}{2}} \, \Vert {\mathcal L}_n\Vert _{L^2(T^\star {\mathop {\mathbb R}\nolimits }^d)}\), one obtains

$$\begin{aligned} \Vert T_n \Vert _{{\mathcal L}(L^2(T^\star {\mathop {\mathbb R}\nolimits }^d))} \lesssim |\lambda |^{- d} \, . \end{aligned}$$

In view of (A.5), this implies that

$$\begin{aligned} \Vert f \star _\lambda \widetilde{\mathcal W}(\ell ,\lambda ,\cdot ) \Vert _{L^{2}(T^\star {\mathop {\mathbb R}\nolimits }^d)}\lesssim |\lambda |^{- d} \, \Vert f \Vert _{L^{2}(T^\star {\mathop {\mathbb R}\nolimits }^d)}\, . \end{aligned}$$

Finally, by definition

$$\begin{aligned} \Vert \widetilde{\mathcal W}(\ell ,\lambda ,\cdot ) \Vert _{L^{\infty }(T^\star {\mathop {\mathbb R}\nolimits }^d)}\lesssim \ell ^{d-1} \, , \end{aligned}$$

which ensures that

$$\begin{aligned} \Vert f \star _\lambda \widetilde{\mathcal W}(\ell ,\lambda ,\cdot ) \Vert _{L^{\infty }(T^\star {\mathop {\mathbb R}\nolimits }^d)}\lesssim \ell ^{d-1} \, \Vert f \Vert _{L^{1}(T^\star {\mathop {\mathbb R}\nolimits }^d)}\, , \end{aligned}$$

and completes the proof of Estimate (A.2) by interpolation. \(\square \)

Appendix B: The inhomogeneous case

Denoting by \((\mathcal U(t))_{t\in {\mathop {\mathbb R}\nolimits }} \) the solution operator of the Schrödinger equation on the Heisenberg group, namely \(\mathcal U(t)u_0\) is the solution of \((S_{\mathop {\mathbb H}\nolimits })\) with \(f=0\) at time t associated with the data \(u_0\), then similarly to the euclidean case \((\mathcal U(t))_{t\in {\mathop {\mathbb R}\nolimits }} \) is a one-parameter group of unitary operators on \(L^2({\mathop {\mathbb H}\nolimits }^d)\). Moreover, the solution to the inhomogeneous equation

$$\begin{aligned} \left\{ \begin{array}{c} i\partial _t u -\Delta _{\mathop {\mathbb H}\nolimits }u = f\\ u_{|t=0} = 0\,, \end{array} \right. \end{aligned}$$

writes

$$\begin{aligned} u(t, \cdot )= -i \int ^t_0 \mathcal U(t-t') f(t', \cdot ) dt' ,\end{aligned}$$
(B.1)

Let us check that it satisfies, for all admissible pairs (pq) in \( {\mathcal A}^{\text{ S }}\),

$$\begin{aligned} \Vert u\Vert _{L^\infty _s L_t^{q} L^{p}_{Y}} \lesssim \Vert f \Vert _{L_t^1 H^{\sigma }({\mathop {\mathbb H}\nolimits }^d)} \end{aligned}$$
(B.2)

with

Let us first assume that, for all t, the source term \(f(t, \cdot ) \) is frequency localized in in the unit ball \({\mathcal B}_1\) in the sense of Definition 3.1, and recall that according to the results of Sect. 5.2, if g is frequency localized in a unit ball, then for all \(2\le p \le q \le \infty \)

$$\begin{aligned} \Vert \mathcal U(t)g\Vert _{L^\infty _s L_t^{q} L^{p}_{Y}} \lesssim \Vert g \Vert _{L^{2}({\mathop {\mathbb H}\nolimits }^d)} \, . \end{aligned}$$
(B.3)

Taking advantage of (B.1), we have for all \(s \in {\mathop {\mathbb R}\nolimits }\),

$$\begin{aligned} \Vert u(t, \cdot , s) \Vert _{L^{p}_{Y}} \le \int _{\mathop {\mathbb R}\nolimits }\Vert \mathcal U(t) \mathcal U(-t') f(t', \cdot , s) \Vert _{L^{p}_{Y}} dt' . \end{aligned}$$

Therefore, still for all s,

$$\begin{aligned} \Vert u(\cdot ,\cdot , s) \Vert _{L_t^{q} L^{p}_{Y}} \le \int _{\mathop {\mathbb R}\nolimits }\Vert \mathcal U(\cdot ) \mathcal U(-t') f(t', \cdot , s) \Vert _{L_t^{q} L^{p}_{Y}} dt' . \end{aligned}$$

Invoking (B.3), we deduce that

$$\begin{aligned} \Vert u\Vert _{L^\infty _s L_t^{q} L^{p}_{Y}} \le \int _{\mathop {\mathbb R}\nolimits }\Vert \mathcal U(-t') f(t', \cdot ) \Vert _{{L^{2}({\mathop {\mathbb H}\nolimits }^d)}} dt' . \end{aligned}$$

Since \(\mathcal U(-t')\) is unitary on \(L^{2}({\mathop {\mathbb H}\nolimits }^d)\), we readily gather that

$$\begin{aligned} \Vert u \Vert _{L^\infty _s L_t^{q} L^{p}_{Y}} \le \int _{\mathop {\mathbb R}\nolimits }\Vert f(t', \cdot ) \Vert _{{L^{2}({\mathop {\mathbb H}\nolimits }^d)}} dt' .\end{aligned}$$
(B.4)

Now if for all t\(f(t, \cdot )\) is frequency localized in a ball of size \(\Lambda \), then setting

$$\begin{aligned} f_{\Lambda }(t, \cdot ) \buildrel \hbox { def}\over =\Lambda ^{-2} f (\Lambda ^{-2} t, \cdot ) \circ \delta _{\Lambda ^{-1}} \end{aligned}$$

we find that on the one hand, \(f_{\Lambda }(t, \cdot )\) is frequency localized in a unit ball for all t, and on the other hand that the solution to the Cauchy problem

$$\begin{aligned} \left\{ \begin{array}{c} i\partial _t u_{\Lambda } -\Delta _{\mathop {\mathbb H}\nolimits }u_{\Lambda } = f_{\Lambda }\\ u_{|t=0} = 0\,, \end{array} \right. \end{aligned}$$

writes

$$\begin{aligned} u_{\Lambda }(t,w)= u (\Lambda ^{-2} t, \cdot ) \circ \delta _{\Lambda ^{-1}} \,. \end{aligned}$$

Now by scale invariance, we have

$$\begin{aligned} \int _{\mathop {\mathbb R}\nolimits }\Vert f_{\Lambda }(t', \cdot ) \Vert _{{L^{2}({\mathop {\mathbb H}\nolimits }^d)}} dt' = \Lambda ^{\frac{Q}{2}}\int _{\mathop {\mathbb R}\nolimits }\Vert f(t', \cdot ) \Vert _{{L^{2}({\mathop {\mathbb H}\nolimits }^d)}} dt' \end{aligned}$$

and

$$\begin{aligned} \Vert u_{\Lambda }\Vert _{L^\infty _s L_t^{q} L^{p}_{Y}} =\Lambda ^{\frac{2}{q} + \frac{2d}{p}} \Vert u\Vert _{L^\infty _s L_t^{q} L^{p}_{Y}} \, . \end{aligned}$$

Consequently, we get

$$\begin{aligned} \Vert u\Vert _{L^\infty _s L_t^{q} L^{p}_{Y}} \le C \int _{\mathop {\mathbb R}\nolimits }\Lambda ^{\frac{Q}{2}- \frac{2}{q} - \frac{2d}{p}} \Vert f(t', \cdot ) \Vert _{{L^{2}({\mathop {\mathbb H}\nolimits }^d)}} dt' \, . \end{aligned}$$

Since \(\displaystyle \frac{Q}{2}- \frac{2}{q} - \frac{2d}{p} \ge 0\), we have

$$\begin{aligned} \Lambda ^{\frac{Q}{2}- \frac{2}{q} - \frac{2d}{p}} \Vert f(t', \cdot ) \Vert _{{L^{2}({\mathop {\mathbb H}\nolimits }^d)}} \lesssim \Vert f(t', \cdot ) \Vert _{{H^{\frac{Q}{2}- \frac{2}{q} - \frac{2d}{p}}({\mathop {\mathbb H}\nolimits }^d)}} \,, \end{aligned}$$

which completes the proof of (B.2).

In the case of the wave equation, we have seen in Paragraph 5.3 that when the Cauchy data \(u_0\) and \(u_1\) are frequency localized in a ring, then u the solution to the Cauchy problem \((W_{\mathop {\mathbb H}\nolimits })\) with \(f=0\) reads, with the previous notations,

$$\begin{aligned} u(t, \cdot )= \mathcal U^+ (t) \gamma ^+ + \mathcal U^- (t) \gamma ^- \, . \end{aligned}$$

This allows to investigate the inhomogeneous wave equation by similar arguments than the Schrödinger equation dealt with above. The proof is left to the reader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahouri, H., Barilari, D. & Gallagher, I. Strichartz Estimates and Fourier Restriction Theorems on the Heisenberg Group. J Fourier Anal Appl 27, 21 (2021). https://doi.org/10.1007/s00041-021-09822-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09822-5

Keywords

Mathematics Subject Classification

Navigation