Skip to main content
Log in

Decomposing the Wavelet Representation for Shifts by Wallpaper Groups

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The wavelet group and wavelet representation associated with shifts coming from a two dimensional crystal symmetry group \(\Gamma \) and dilations by powers of 3, are defined and studied. The main result is an explicit decomposition of this \(3\Gamma \)-wavelet representation into irreducible representations of the wavelet group. Because we prove that the \(3\Gamma \)-wavelet representation is multiplicity free, this direct integral decomposition is essentially unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, L.: An account of the theory of crystallographic groups. Proc. Am. Math. Soc. 16, 1230–1236 (1965)

    Article  MathSciNet  Google Scholar 

  2. Currey, B., Mayeli, A., Oussa, V.: Decompositions of generalized wavelet representations. Contemp. Math. 626, 67–85 (2014)

    Article  MathSciNet  Google Scholar 

  3. Dai, X., Larson, D.R.: Wandering vectors for unitary systems and orthogonal wavelets. Mem. Am. Math. Soc. 134 (640) (1998)

  4. Dai, X., Larson, D.R., Speegle, D.: Wavelet sets in \(\mathbb{R}^n\). J. Fourier Anal. Appl. 3, 451–456 (1997)

    Article  MathSciNet  Google Scholar 

  5. Dutkay, D.E.: Low-pass filters and representations of the Baumslag Solitar group. Trans. Am. Math. Soc. 358, 5271–5291 (2006)

    Article  MathSciNet  Google Scholar 

  6. Dutkay, D.E., Han, D., Jorgensen, P.E.T., Picioroaga, G.: On common fundamental domains. Adv. Math. 239, 109–127 (2013)

    Article  MathSciNet  Google Scholar 

  7. Dutkay, D.E., Silvestrov, S.: Reducibility of the wavelet representation associated to the Cantor set. Proc. Am. Math. Soc. 139, 3657–3664 (2011)

    Article  MathSciNet  Google Scholar 

  8. Federov, E.: Symmetry in the plane. Zapiski Rus. Mineralog. Obščestva, Ser. 2 28 (1891), 345–390

  9. Folland, G.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  10. González, A.L., del Carmen Moure, M.: Crystallographic Haar wavelets. J. Fourier Anal. Appl. 17, 1119–1137 (2011)

    Article  MathSciNet  Google Scholar 

  11. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Springer, New York (1979)

    Book  Google Scholar 

  12. Hulanicki, A.: Means and Folner conditions on locally compact groups. Studia Math. 27, 87–104 (1966)

    Article  MathSciNet  Google Scholar 

  13. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, Vol. II, Advanced Theory. Pure and Applied Mathematics, vol. 100. Academic Press, Inc., Orlando, FL (1986)

  14. Kaniuth, E.: Der Typ der regulären Darstellung diskreter Gruppen. Math. Ann. 182, 334–339 (1969)

    Article  MathSciNet  Google Scholar 

  15. Kaniuth, E., Taylor, K.F.: Induced Representations of Locally Compact Groups. Cambridge Tracts in Mathematics v., vol. 197. Cambridge University Press, Cambridge (2012)

  16. Lim, L.-H., Packer, J.A., Taylor, K.F.: A direct integral decomposition of the wavelet representation. Proc. Am. Math. Soc. 129, 3057–3067 (2001)

    Article  MathSciNet  Google Scholar 

  17. MacArthur, J., Taylor, K.F.: Wavelets with crystal symmetry shifts. J. Fourier Anal. Appl. 17, 1109–1118 (2011)

    Article  MathSciNet  Google Scholar 

  18. Mackey, G.W.: Imprimitivity for representations of locally compact groups I. Proc. Natl. Acad. Sci. USA 35, 537–545 (1949)

    Article  MathSciNet  Google Scholar 

  19. Mackey, G.W.: The Theory of Unitary Group Representations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1976)

    MATH  Google Scholar 

  20. Merrill, K.D.: Simple Wavelet Sets for Scalar Dilations in \(\mathbb{R}^2\), Representations, Wavelets, and Frames. Applied and Numerical Harmonic Analysis, pp. 177–192. Birkhäuser, Boston (2008)

  21. Merrill, K.D.: Simple wavelet sets for matrix dilations in \(\mathbb{R}^2\). Numer. Funct. Anal. Optim. 33, 1112–1125 (2012)

    Article  MathSciNet  Google Scholar 

  22. Merrill, K.D.: Simple wavelet sets in \(\mathbb{R}^n\). J. Geom. Anal. 25, 1295–1305 (2015)

    Article  MathSciNet  Google Scholar 

  23. Merrill, K.D.: Wavelet Sets for Crystallographic Groups. To appear in Excursions in Harmonic Analysis, vol. 6. Birkhäuser, Basel (2021)

  24. Morandi, P.J.: The Classification of Wallpaper Patterns: From Cohomology to Escher’s Tesselations. New Mexico State University, Las Cruces (2007)

    Google Scholar 

  25. Nielsen, O.A.: Direct Integral Theory. Lecture Notes in Pure and Applied Mathematics, vol. 61. Marcel Dekker Inc, New York (1980)

    MATH  Google Scholar 

  26. Paterson, A.L.T.: Amenability, Mathematical Surveys and Monographs, vol. 29. American Mathematical Society, Providence, RI (1988)

    Google Scholar 

  27. Schattschneider, D.: The plane symmetry groups, their recognition and notation. Am. Math. Mon. 85, 439–450 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The third author was supported by an individual grant from the Simons Foundation (# 316981). We thank the anonymous referees for helpful suggestions and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith A. Packer.

Additional information

Communicated by Hartmut Führ.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baggett, L.W., Merrill, K.D., Packer, J.A. et al. Decomposing the Wavelet Representation for Shifts by Wallpaper Groups. J Fourier Anal Appl 27, 16 (2021). https://doi.org/10.1007/s00041-021-09818-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09818-1

Keywords

Mathematics Subject Classification

Navigation