Abstract
We study the non-uniformity of probability measures on the interval and circle. On the interval, we identify the Wasserstein-p distance with the classical \(L^p\)-discrepancy. We thereby derive sharp estimates in Wasserstein distances for the irregularity of distribution of sequences on the interval and circle. Furthermore, we prove an \(L^p\)-adapted Erdős–Turán inequality, and use it to extend a well-known bound of Pólya and Vinogradov on the equidistribution of quadratic residues in finite fields.
This is a preview of subscription content, access via your institution.
References
Beck, J., Chen, W.W.L.: Irregularities of Distribution. Cambridge Tracts in Mathematics, vol. 89. Cambridge University Press, Cambridge (1987)
Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)
Bilyk, D.: On Roth’s orthogonal function method in discrepancy theory. Unif. Distrib. Theory 6(1), 143–184 (2011)
Brown, L., Steinerberger, S.: On the Wasserstein distance between classical sequences and the Lebesgue measure. Trans. Am. Math. Soc. (2020)
Chen, W.W.L.: On irregularities of distribution. Mathematika 27(2), 153–170 (1980)
Davenport, H.: Note on irregularities of distribution. Mathematika 3(2), 131–135 (1956)
Davenport, H.: Multiplicative Number Theory. Graduate Texts in Mathematics, vol. 74, 3rd edn. Springer, New York (2000). Revised and with a preface by Hugh L. Montgomery
Delon, J., Salomon, J., Sobolevski, A.: Fast transport optimization for Monge costs on the circle. SIAM J. Appl. Math. 70(7), 2239–2258 (2010)
Erdős, P., Turán, P.: On a problem in the theory of uniform distribution I. Nederl. Akad. Wetensch. Proc. 51, 1146–1154 (1948)
Erdős, P., Turán, P.: On a problem in the theory of uniform distribution II. Nederl. Akad. Wetensch. Proc. 51, 1262–1269 (1948)
Ganelius, T.: Some applications of a lemma on Fourier series. Publ. Inst. Math. 11(17), 9–18 (1957)
Givens, C.R., Shortt, R.M.: A class of Wasserstein metrics for probability distributions. Michigan Math. J. 31(2), 231–240 (1984)
Granville, A., Soundararajan, K.: The distribution of values of \(L(1,\chi _d)\). Geom. Funct. Anal. 13(5), 992–1028 (2003). https://doi.org/10.1007/s00039-003-0438-3
Halász, G.: On Roth’s method in the theory of irregularities of point distributions. Recent Prog. Anal. Number Theory 2, 79–94 (1981)
Kantorovič, L.V., Rubinšteĭn, G.Š.: On a space of completely additive functions. Vestnik Leningrad Univ. 13(7), 52–59 (1958)
Koksma, J.F.: A general theorem from the theory of uniform distribution modulo 1. Math. Zutphen. B 11, 7–11 (1942)
Koksma, J.F.: Some integrals in the theory of uniform distribution modulo 1. Math. Zutphen. B 11, 49–52 (1942)
Kolmogorov, A.: Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari 4, 83–91 (1933)
Lerch, M.: Question 1547. L’Intermed. Math. 11, 144–145 (1904)
Montgomery, H.L., Vaughan, R.C.: Exponential sums with multiplicative coefficients. Invent. Math. 43(1), 69–82 (1977). https://doi.org/10.1007/BF01390204
Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000). https://doi.org/10.1006/jfan.1999.3557
Paley, R.E.A.C.: A theorem on characters. J. Lond. Math. Soc. 7(1), 28–32 (1932). https://doi.org/10.1112/jlms/s1-7.1.28
Peyre, R.: Comparison between \({W}_2\) distance and \(\dot{H}^{-1}\) norm, and localisation of Wasserstein distance. ArXiv e-prints arXiv:1104.4631 (2011)
Pólya, G.: Über die Verteilung der quadratischen Reste und Nichtreste, pp. 21–29. Göttingen, Nachrichten (1918)
Proĭnov, P.D.: On irregularities of distribution. C. R. Acad. Bulgare Sci. 39(9), 31–34 (1986)
Proĭnov, P.D., Grozdanov, V.S.: On the diaphony of the van der Corput–Halton sequence. J. Number Theory 30(1), 94–104 (1988). https://doi.org/10.1016/0022-314X(88)90028-5
Roth, K.F.: On irregularities of distribution. Mathematika 1(2), 73–79 (1954)
Santambrogio, F.: Optimal Transport for Applied Mathematicians. Progress in Nonlinear Differential Equations and their Applications, vol. 87. Birkhäuser, Cham (2015)
Schmidt, W.M.: Irregularities of distribution VII. Acta Arith. 21, 45–50 (1972)
Steinerberger, S.: Wasserstein distance, Fourier series and applications. ArXiv e-prints arXiv:1803.08011 (2018)
Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Stat. 36(2), 423–439 (1965)
Vallender, S.S.: Calculation of the Wasserstein distance between probability distributions on the line. Theory Probab. Appl. 18(4), 784–786 (1974)
van Aardenne-Ehrenfest, T.: Proof of the impossibility of a just distribution of an infinite sequence of points over an interval. Nederl. Akad. Wetensch. Proc. 48, 266–271 (1945)
van der Corput, J.G.: Verteilungsfunktionen I. Nederl. Akad. Wetensch. Proc. 38, 813–821 (1935)
van der Corput, J.G.: Verteilungsfunktionen II. Nederl. Akad. Wetensch. Proc. 38, 1058–1068 (1935)
Villani, C.: Topics in optimal transportation, vol. 58. American Mathematical Society, Providence (2003)
Vinogradov, I.M.: Über die Verteilung der quadratischen Reste und Nichtreste. J. Soc. Phys. Math. Univ. Permi 2, 1–14 (1919)
Zinterhof, P.: Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Kl. II 185(1–3), 121–132 (1976)
Zinterhof, P., Stegbuchner, H.: Trigonometrische Approximation mit Gleichverteilungsmethoden. Studia Sci. Math. Hung. 13(3–4), 273–289 (1978)
Acknowledgements
We are indebted to Sarah Peluse, who offered indispensable guidance and references for the analytic number theory in the final section. We also thank Stefan Steinerberger, Andrea Ottolini, and the two anonymous referees for their astute suggestions. This work was supported by the Fannie and John Hertz Foundation and by NSF Grant DGE-1656518.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Massimo Fornasier.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Graham, C. Irregularity of Distribution in Wasserstein Distance. J Fourier Anal Appl 26, 75 (2020). https://doi.org/10.1007/s00041-020-09786-y
Received:
Revised:
Published:
DOI: https://doi.org/10.1007/s00041-020-09786-y