Skip to main content
Log in

Random Discretization of the Finite Fourier Transform and Related Kernel Random Matrices

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper is centred on the spectral study of a random Fourier matrix, that is an \(n\times n\) matrix A with (jk) entries given by \(\exp (2i\pi m Y_j Z_k)\), where \(Y_j\) and \(Z_k\) are two i.i.d sequences of random variables and \(1\le m\le n\) is a real number. When the \(Y_j\) and \(Z_k\) are uniformly distributed on a bounded symmetric interval, this may be seen as a random discretization of the finite Fourier transform, whose spectrum has been extensively studied in relation with band-limited functions. Moreover, this particular case of random finite Fourier matrix has been proposed in wireless telecommunication in order to approach the singular values of some channel fading matrices. We first compare in the \(\ell ^2\)-norm, the spectrum of the matrix \(A^*A\) with the spectrum of its associated integral operator. We show that the classical methods of concentration inequalities for kernel random matrices are well adapted for the spectral analysis of random Fourier matrices. We then concentrate on uniform distributions for the laws of \(Y_j\)’s and \(Z_k\)’s, for which the integral operator is the well-known Sinc-kernel operator with parameter m. We translate to random Fourier matrices the knowledge that we have on the spectrum of this operator. In particular, we study some asymptotic and non-asymptotic behaviours of the set of the eigenvalues of \(A^*A.\) This study is done in the spirit of recent work on the Sinc-kernel integral operator. As applications, we give fairly good approximations of the number of degrees of freedom, as well as an estimate of the capacity of a MIMO wireless communication network approximation model. Finally, we provide the reader with some numerical examples that illustrate the theoretical results of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adamczak, R., Bednorz, W.: Some remarks on MCMC estimation of spectra of integral operators. Bernoulli 21(4), 2073–2092 (2015)

    Article  MathSciNet  Google Scholar 

  2. Blanchard, G., Bousquet, O., Zwald, L.: Statistical properties of kernel prinicipal component analysis. Mach. Learn. 66(2), 259–294 (2007)

    Article  Google Scholar 

  3. Bonami, A., Karoui, A.: Uniform approximation and explicit estimates of the Prolate Spheroidal Wave Functions. Constr. Approx. 43, 15–45 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bonami, A., Karoui, A.: Spectral decay of time and frequency limiting operator. Appl. Comput. Harmon. Anal. 42, 1–20 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bonami, A., Jaming, P., Karoui, A.: Non-Asymptotic behaviour of the spectrum of the Sinc-kernel operator and related applications. arXiv:1804.01257 (2018)

  6. De Vito, E., Rosasco, L., Caponnetto, A., De Giovannini, U., Odone, F.: Learning from examples as an inverse problem. J. Mach. Learn. Res. 6, 883–904 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Desgroseilliers, M., Lévêque, O., Preissman, E.: Spatial degrees of freedom of MIMO systems in line-of-sight environment. In: Proceedings of IEEE International Symposium on Information Theory, Istanbul, Turkey (2013)

  8. Desgroseilliers, M., Lévêque, O., Preissman, E.: Partially random matrices in line-of-sight wireless networks. In: Proceedings of IEEE Asilomar, Pacific Grove, CA (2013)

  9. Ferreira, J.C., Menegatto, V.A.: Eigenvalues of integral operators defined by smooth positive definite kernels. Integr. Equ. Oper. Theory 64(1), 61–81 (2009)

    Article  MathSciNet  Google Scholar 

  10. Hogan, J.A., Lakey, J.D.: Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications, Applied and Numerical Harmonic Analysis Series. Birkhäuser, Springer, New York (2013)

    Google Scholar 

  11. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  12. Kato, T.: Variation of discrete spectra. Commun. Math. Phys. 111, 501–504 (1987)

    Article  MathSciNet  Google Scholar 

  13. Koltchinskii, V., Giné, E.: Random matrix approximation of spectra of integral operators. Bernoulli 6(1), 113–167 (2000)

    Article  MathSciNet  Google Scholar 

  14. Landau, H.: On the density of phase-space expansions. IEEE Trans. Inf. Theory 39(4), 1152–1156 (1993)

    Article  Google Scholar 

  15. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty-III. The dimension of space of essentially time-and band-limited signals. Bell Syst. Tech. J. 41, 1295–1336 (1962)

    Article  MathSciNet  Google Scholar 

  16. Osipov, A., Rokhlin, V., Xiao, H.: Prolate spheroidal wave functions of order zero. Mathematical tools for bandlimited approximation, Applied Mathematical Sciences, 187, Springer, New York (2013)

  17. Özgür, A., Lévêque, O., Tse, D.: Spatial degrees of freedom of large distributed MIMO systems and wireless ad hoc networks. IEEE J. Sel. Areas Commun. 31(2), 202–2014 (2013)

    Article  Google Scholar 

  18. Pinelis, I.: An approach to inequalities for the distributions of infinite-dimensional martingales, In: Dudley R.M., Hahn M.G., Kuelbs J. (eds.) Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference. Progress in Probability, 30 Birkhäuser, Boston, MA, 128–134 (1992)

  19. Rosasco, L., Belkin, M., De Vito, E.: On learning with integral operators. J. Mach. Learn. Res. 11, 905–934 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Shawe-Taylor, J., Williams, K.I., Cristianini, N., Kandola, J.: On the Eigenspectrum of the Gram matrix and the generalized error of kernel-PCA. IEEE Trans. Inf. Theory 51(7), 2510–2522 (2005)

    Article  Google Scholar 

  21. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  22. Shawe-Taylor, J., Cristianini, N., Kandola, J.: On the concentration of spectral properties. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 511–517. MIT Press, Cambridge (2002)

    Google Scholar 

  23. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty I. Bell Syst. Tech. J. 40, 43–64 (1961)

    Article  MathSciNet  Google Scholar 

  24. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty-IV: Extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J. 43, 3009–3057 (1964)

    Article  Google Scholar 

  25. Somaraju, R., Trumpf, J.: Degrees of freedom of a communication channel: using DOF singular values. IEEE Trans. Inf. Theory 56(4), 1560–1573 (2010)

    Article  MathSciNet  Google Scholar 

  26. Tao, T.: Topics in Random Matrix Theory, Graduate Studies in Mathematics, vol. 132. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

  27. Zwald, L., Blanchard, G.: On the convergence of eigenspaces in kernel principal component analysis. Advances in Neural Information Processing Systems 18, Proceedings of the 2005 Conference

Download references

Acknowledgements

The authors thank very much the anonymous referees for the valuable comments and suggestions that helped them to improve the revised versions of this work. The authors also thank Marguerite Zani and Radoslaw Adamczak for useful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrazek Karoui.

Additional information

Communicated by Hans G. Feichtinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the French-Tunisian CMCU PHC-Utique research project 20G1503 and the Tunisian DGRST research Grants UR 13ES47.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonami, A., Karoui, A. Random Discretization of the Finite Fourier Transform and Related Kernel Random Matrices. J Fourier Anal Appl 26, 29 (2020). https://doi.org/10.1007/s00041-020-09736-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-020-09736-8

Keywords

Mathematics Subject Classification

Navigation