Skip to main content
Log in

Bochner–Riesz Means of Morrey Functions

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper concerns both norm estimation and pointwise approximation for the Bochner–Riesz means of an arbitrary Morrey function on \({{{{\mathbb {R}}}}^n}\)—Theorems 1.1 and 1.2 for \(L^{p,\lambda }({{{{\mathbb {R}}}}^n})\)—thereby generalizing the corresponding results for \(L^p({{{{\mathbb {R}}}}^n})\) in Stein (Acta Math 100:93–147, 1958) and Carbery et al. (J Lond Math Soc 38:513–524, 1988). As a side note, this paper also establishes Lemma 4.1 of Tomas–Stein type—if \(f\in L^{p,\lambda }({{{{\mathbb {R}}}}^n})\) under \( 2^{-1}(n+1)<\lambda \le n\) is compactly supported, then

$$\begin{aligned} \Vert {\hat{f}}\Vert _{L^2({\mathbb {S}}^{n-1})}\lesssim \Vert f\Vert _{L^{p,\lambda }({{{{\mathbb {R}}}}^n})}\ \ \hbox {for}\ \ \frac{4\lambda }{n+1+2\lambda }\le p<\frac{2\lambda }{n+1}. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42, 765–778 (1975)

    Article  MathSciNet  Google Scholar 

  2. Adams, D.R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53, 1629–1663 (2004)

    Article  MathSciNet  Google Scholar 

  3. Adams, D.R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Mat. 50, 201–230 (2012)

    Article  MathSciNet  Google Scholar 

  4. Adams, D.R., Xiao, J.: Restrictions of Riesz-Morrey potentials. Ark. Mat. 54, 201–231 (2016)

    Article  MathSciNet  Google Scholar 

  5. Benea, C., Bernicot, F., Luque, T.: Sparse bilinear forms for Bochner Riesz multipliers and applications. Trans. London Math. Soc. 4, 110–128 (2017)

    Article  MathSciNet  Google Scholar 

  6. Benedetto, J.J., Lakey, J.D.: The definition of the Fourier transformation for weigthed inequalities. J. Funct. Anal. 120, 403–439 (1974)

    Article  Google Scholar 

  7. Buckley, S.M.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Amer. Math. Soc. 340, 253–272 (1993)

    Article  MathSciNet  Google Scholar 

  8. Carbery, A., Rubio de Francia, J.L., Vega, L.: Almost everywhere summability of Fourier integrals. J. London Math. Soc. 38, 513–524 (1988)

    Article  MathSciNet  Google Scholar 

  9. Carleson, L., Sjölin, P.: Osillatory integrals and a multiplier problem for the disc. Studia Math. 44, 287–299 (1972)

    Article  MathSciNet  Google Scholar 

  10. Christ, M.: On almost everywhere convergence of Bochner-Riesz means in higher dimensions. Proc. Amer. Math. Soc. 95, 16–20 (1985)

    Article  MathSciNet  Google Scholar 

  11. Fefferman, C.: Inequalities for strongly singular convolution operators. Acta Math. 124, 9–36 (1970)

    Article  MathSciNet  Google Scholar 

  12. Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education Inc, (2004)

  13. Herz, C.S.: On the mean inversion of Fourier and Hankel transforms. Proc. Nat. Acad. Sci. USA 40, 996–999 (1954)

    Article  MathSciNet  Google Scholar 

  14. Hörmander, L.: Oscillartory integrals and multipliers on \(FL^p\). Ark. Mat. 11, 1–11 (1973)

    Article  MathSciNet  Google Scholar 

  15. Lu, S.: Conjectures and problems on Bochner-Riesz means. Front. Math. China 8(6), 1237–1251 (2013)

    Article  MathSciNet  Google Scholar 

  16. Lu, S., Yan, D.: Bochner-Riesz Means on Euclidean Spaces. World Scientific, (2013)

  17. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  Google Scholar 

  18. Orobitg, J., Verdera, J.: Choquet integrals, Hausdorff content and the Hardy-Littlewood maximal operator. Bull. London Math. Soc. 30, 145–150 (1998)

    Article  MathSciNet  Google Scholar 

  19. Shi, X., Sun, Q.: Weighted norm inequalities for Bochner-Riesz operators and singular integral operators. Proc. Amer. Math. Soc. 116, 665–673 (1992)

    Article  MathSciNet  Google Scholar 

  20. Stein, E.M.: Localization and summability of multiple Fourier series. Acta Math 100, 93–147 (1958)

    Article  MathSciNet  Google Scholar 

  21. Tanaka, H.: Two-weight norm inequalities on Morrey spaces. Ann. Acad. Sci. Fenn. Math 40, 773–791 (2015)

    Article  MathSciNet  Google Scholar 

  22. Tao, T.: The Bochner-Riesz conjecture implies the restriction conjecture. Duke Math. J. 96, 363–375 (1990)

    Article  MathSciNet  Google Scholar 

  23. Tomas, P.: A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc. 81, 477–478 (1975)

    Article  MathSciNet  Google Scholar 

  24. Torchinsky, A.: Real Variable Methods in Harmonic Analysis. #123 Pure and Appl. Math. Series, Acadmic Press, (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xiao.

Additional information

Communicated by Mieczyslaw Mastylo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jie Xiao was supported by NSERC of Canada (#20171864).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, D.R., Xiao, J. Bochner–Riesz Means of Morrey Functions. J Fourier Anal Appl 26, 7 (2020). https://doi.org/10.1007/s00041-019-09712-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-019-09712-x

Keywords

Mathematics Subject Classification

Navigation