Skip to main content
Log in

On Some Spectral Properties of Pseudo-differential Operators on \(\mathbb {T}\)

  • Research Article
  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper we use Riesz spectral Theory and Gershgorin Theory to obtain explicit information concerning the spectrum of pseudo-differential operators defined on the unit circle \(\mathbb {T} := \mathbb {R}/ 2 \pi \mathbb { Z}\). For symbols in the Hörmander class \(S^m_{1 , 0} (\mathbb {T}\times \mathbb {Z})\), we provide a sufficient and necessary condition to ensure that the corresponding pseudo-differential operator is a Riesz operator in \(L^p (\mathbb {T})\), \(1< p < \infty \), extending in this way compact operators characterisation in Molahajloo (Pseudo-Differ Oper Anal Appl Comput 213:25–29, 2011) and Ghoberg’s lemma in Molahajloo and Wong (J Pseudo-Differ Oper Appl 1(2):183–205, 2011) to \(L^p (\mathbb {T})\). We provide an example of a non-compact Riesz pseudo-differential operator in \(L^p (\mathbb {T})\), \(1<p<2\). Also, for pseudo-differential operators with symbol satisfying some integrability condition, it is defined its associated matrix in terms of the Fourier coefficients of the symbol, and this matrix is used to give necessary and sufficient conditions for \(L^2\)-boundedness without assuming any regularity on the symbol, and to locate the spectrum of some operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agranovich, M.S.: Spectral properties of elliptic pseudodifferential operators on a closed curve. Funct. Anal. Appl. 13(4), 279–281 (1979)

    Google Scholar 

  2. Aleksić, J., Kostić, V., Žigić, M.: Spectrum localizations for matrix operators on lp spaces. Appl. Math. Comput. 249, 541–553 (2014)

    Google Scholar 

  3. Caradus, S.R., Pfaffenberger, W.E.: Calkin Algebras and Algebras of Operators on Banach Spaces, 1st edn. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York (1974)

    Google Scholar 

  4. Cardona, D.: Hölder-Besov boundedness for periodic pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 8(1), 13–34 (2017)

    Google Scholar 

  5. Cardona, D.: On the boundedness of periodic pseudo-differential operators. arXiv:1701.08184 [math.AP] (2017)

  6. Carey, A., Ellwood, D., Paycha, S., Rosenberg S.: Quantum field theory, and pseudodifferential operators. In: Clay Mathematics Proceedings, vol. 12, pp. 37 – 72. AMS, New York (2010)

  7. Conway, J.B.: A Course in Functional Analysis, 2 edn. (Corrected Fourth Printing) ed. Graduate Texts in Mathematics 096. Springer, New York (1997)

  8. Crone, L.: A characterization of matrix operators on l2. Math. Z. 123, 315–317 (1971)

    Google Scholar 

  9. Delgado, J.: Lp-bounds for pseudo-differential operators on the torus. In: Molahajloo, S., et al. (eds.) Pseudo-Differential Operators, Generalized Functions and Asymptotics, pp. 103–116. Birkhauser, Basel (2013)

    Google Scholar 

  10. Delgado, J., Ruzhansky, M.: Kernel and symbol criteria for schatten classes and r-nuclearity on compact manifolds. Comptes Rendus Math. 352(10), 779–784 (2014)

    Google Scholar 

  11. Delgado, J., Ruzhansky, M.: Schatten classes and traces on compact Lie groups. Math. Res. Lett. arXiv:1303.3914 [math.FA] (2016)

  12. Delgado, J., Ruzhansky, M.: \(L^{p}\)-bounds for pseudo-differential operators on compact lie groups. J. Inst. Math. Jussieu (2017). https://doi.org/10.1017/S1474748017000123

    Google Scholar 

  13. Eidelman, Y., Milman, V., Tsolomitis, A.: Functional Analysis: An introduction. Graduate Studies in Mathematics. American Mathematical Society, New York (2004)

    Google Scholar 

  14. Esposito, G., Napolitano, G.: Geometry and physics of pseudodifferential operators on manifolds. Il Nuovo Cimento C 38, 158–172 (2015)

    Google Scholar 

  15. Farid, F., Lancaster, P.: Spectral properties of diagonally dominant infinite matrices. II. Linear Algebr. Appl. 143, 7–17 (1991)

    Google Scholar 

  16. Ghaemi, M.B., Birgani, M., Morsalfard, E.N.: A study on pseudo-differential operators on \({\mathbb{S}}^{1}\) and \({\mathbb{Z}}\). J. Pseudo-Differ. Oper. Appl. 7, 237–247 (2016)

    Google Scholar 

  17. Ghaemi, M.B., Birgani, M.J., Wong, M.W.: Characterizations of nuclear pseudo-differential operators on \(\mathbb{S}^{1}\) with applications to adjoints and products. J. Pseudo-Differ. Oper. Appl. 8(2), 191–201 (2017)

    Google Scholar 

  18. Ghaemi, M. B., Nabizadeh Morsalfard, E., Birgani, M.: Some criteria for boundedness and compactness of pseudo-differential operators on \(l^p ({\mathbb{S}}^1)\), \(1< p< \infty \)

  19. Hernández, F.L., Semenov, E.M., Tradacete, P.: Strictly singular operators on \(L^p\) spaces and interpolation. Proc. Am. Math. Soc. 138(2), 675–686 (2010)

    Google Scholar 

  20. Lindenstrauss, J., Johnson, W.: Handbook of the geometry of Banach spaces, 1st, vol. 1, ed edn. Elsevier, Amsterdam (2001)

  21. McLean, W.: Local and global descriptions of periodic pseudodifferential operators. Math. Nachr. 150(1), 151–161 (1991)

    Google Scholar 

  22. Molahajloo, S.: A characterization of compact pseudo-differential operators on \(\mathbb{S}^1\). Pseudo-Differ. Oper. Anal. Appl. Comput. 213, 25–29 (2011)

    Google Scholar 

  23. Molahajloo, S., Wong, M.W.: Pseudo-differential operators on \(\mathbb{S}^{1}\). New Developments in Pseudo-Differential Operators: ISAAC Group in Pseudo-Differential Operators (IGPDO), pp. 297–306

  24. Molahajloo, S., Wong, M.W.: Ellipticity, fredholmness and spectral invariance of pseudo-differential operators on \(\mathbb{S}^1\). J. Pseudo-Differ. Oper. Appl. 1(2), 183–205 (2010)

    Google Scholar 

  25. Pietsch, A.: Operator Ideals. North-Holland Mathematical Library, vol. 20. Elsevier, Amterdam (1980)

  26. Pietsch, A.: Eigenvalues and S-Numbers. Cambridge Studies in Advanced Mathematics, vol. 13. Cambridge University Press, Cambridge (1987)

  27. Pirhayati, M.: Spectral Theory of Pseudo-Differential Operators on \(\mathbb{S}^1\), pp. 15–23. Springer, Basel (2011)

  28. Ruston, A.F.: Operators with a fredholm theory. J. Lond. Math. Soc. 3, 318–326 (1964)

    Google Scholar 

  29. Ruzhansky, M., Turunen, V.: Quantization of pseudo-differential operators on the torus. arXiv:0805.2892 [math.FA] (2008)

  30. Ruzhansky, M., Turunen, V.: Pseudo-Differential Operators and Symmetries. Background Analysis and Advanced Topics, 1st edn. Birkhäuser, Basel (2009)

  31. Shivakumar, P., Williams, J., Rudraiah, N.: Eigenvalues for infinite matrices. Linear Algebr. Appl. 96, 35–63 (1987)

    Google Scholar 

  32. West, T.T.: Riesz operators in banach spaces. Proc. Lond. Math. Soc. 16(1), 131–140 (1996)

    Google Scholar 

  33. Wong, M.W.: Discrete Fourier Analysis, 1 edn. Pseudo-Differential Operators 5. Birkhäuser Basel (2011)

Download references

Acknowledgements

I sincerely thank the guidance of Carlos Andres Rodriguez Torijano who proposed me this research as the first step in my career as a mathematical researcher. I also want to thank professor Michael Ruzhansky and the anonymous referees for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Velasquez-Rodriguez.

Additional information

Communicated by Michael Ruzhansky.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velasquez-Rodriguez, J.P. On Some Spectral Properties of Pseudo-differential Operators on \(\mathbb {T}\). J Fourier Anal Appl 25, 2703–2732 (2019). https://doi.org/10.1007/s00041-019-09680-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-019-09680-2

Keywords

Mathematics Subject Classification

Navigation