Diaconis–Shahshahani Upper Bound Lemma for Finite Quantum Groups

  • J. P. McCarthyEmail author


A central tool in the study of ergodic random walks on finite groups is the Upper Bound Lemma of Diaconis and Shahshahani. The Upper Bound Lemma uses Fourier analysis on the group to generate upper bounds for the distance to random and thus can be used to determine convergence rates for ergodic walks. The Fourier analysis of quantum groups is remarkably similar to that of classical groups. This allows for a generalisation of the Upper Bound Lemma to an Upper Bound Lemma for finite quantum groups. The Upper Bound Lemma is used to study the convergence of ergodic random walks on the dual group \(\widehat{S_n}\) as well as on the truly quantum groups of Sekine.


Random walks Finite quantum groups Representation theory 

Mathematics Subject Classification

46L53 (60J05, 20G42) 



I would like to thank Adam Skalski; Example 4.2 was developed during a visit to Adam at the Institute of Mathematics of the Polish Academy of Sciences (IMPAN), Warsaw, Poland. This trip was financially supported by IMPAN and also Cork Institute of Technology. I would like to thank Uwe Franz for assisting with Proposition 2.1. I would like to thank Amaury Freslon for encouragement and helpful comments; in particular for help in greatly improving the presentation of the bounds for the random walk on \(\widehat{S_n}\). The rest of the paper was developed during the author’s Ph.D. study at University College Cork, under the supervision of Stephen Wills.


  1. 1.
    Bekka, B., de la Harpe, P., Valette, A.: Kazhdans Property (\(T\)), New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge (2008)Google Scholar
  2. 2.
    Bhowmick, J., Skalski, A., Sołtan, P.M.: Quantum group of automorphisms of a finite quantum group. J. Algebra 423, 514–537 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Diaconis, P.: Group Representations in Probability and Statistics. IMS, Hayward (1988)zbMATHGoogle Scholar
  4. 4.
    Diaconis, P., Shahshahani, M.: Generating a random permutation with random transpositions. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 57, 159–179 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Franz, U., Gohm, R.: Random Walks on Finite Quantum Groups, Quantum Independent Increment Processes II. Lecture Notes in Mathematics, pp. 1–32. Springer, Berlin (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Franz, U., Skalski, A.: On idempotent states on quantum groups. J. Algebra 322(5), 1774–1802 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Freslon, A.: Cut-off phenomenon for random walks on free orthogonal free groups, to appear in Probab. Theory Relat. Fields (2018)Google Scholar
  8. 8.
    Freslon, A.: Quantum reflections, random walks and cut-off (2018). arXiv:1802.09402
  9. 9.
    Kac, G.I., Paljutkin, V.G.: Finite group rings. Trudy Moskov. Mat. Obšč. 15, 224–261 (1966). Translated in Trans. Moscow Math. Soc. (1967), 251–284, 1996Google Scholar
  10. 10.
    McCarthy, J.P.: Random walks on finite quantum groups: Diaconis–Shahshahani theory for quantum groups. PhD thesis (2017). arXiv:1709.09357
  11. 11.
    McCarthy, J.P.: The cut-off phenomenon in random walks on finite groups. MSc thesis (2010). arXiv:1504.05387
  12. 12.
    Palcoux, S.: Ore’s theorem for cyclic subfactor planar algebras and beyond. Pac. J. Math. 292–1, 203–221 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pisier, G.: Non-commutative \(\cal{L}^p\)-spaces. In: Johnson, W.B., Lindenstrauss, J. (eds.) Handbook of the Geometry of Banach Spaces, vol. 2, pp. 1459–1517. North Holland, Amsterdam (2003)CrossRefGoogle Scholar
  14. 14.
    Rosenthal, J.S.: Random rotation: characters and random walks on \(SO(N)\). Ann. Probab. 22(1), 398–423 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Saloff-Coste, L.: Random Walks on Finite Groups (Probability on Discrete Structures), pp. 263–346. Springer, Berlin (2004)zbMATHGoogle Scholar
  16. 16.
    Sekine, Y.: An example of finite-dimensional Kac algebras of Kac–Paljutkin type. Proc. Am. Math. Soc. 124(4), 1139–1147 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Steele, J.M.: The Cauchy–Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press, New York (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    Timmermann, T.: An invitation to quantum groups and duality. Eur. Math. Soc. (2008)Google Scholar
  19. 19.
    Vainermann, L.I., Kac, G.I.: Nonunimodular ring groups and Hopf–von Neumann algebras. Dokl. Akad. Nauk SSSR 211, 194–225; English transl. Math. USSR Sb. 23 (1974), 170–181 (1973)Google Scholar
  20. 20.
    Van Daele, A.: Multiplier Hopf algebras. Trans. Am. Math. Soc. 342(2), 917–932 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Van Daele, A.: The Haar measure on finite quantum groups. Proc. Am. Math. Soc. 125(12), 3489–3500 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Van Daele, A.: An algebraic framework for group duality. Adv. Math. 140(2), 323–366 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Van Daele, A.: The Fourier transform for group duality (2007). Arxiv preprint, arXiv:math/0609502
  24. 24.
    Wang, S.: \(L_p\)-improving convolution operators on finite quantum groups. Indiana Univ. Math. J. 65(5), 1609–1637 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111, 613–665 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsCork Institute of TechnologyCorkIreland

Personalised recommendations