Skip to main content
Log in

\(L^{p}\) Norms of the Lattice Point Discrepancy

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We estimate the \(L^{p}\) norms of the discrepancy between the volume and the number of integer points in \(r\Omega -x\), a dilated by a factor r and translated by a vector x of a convex body \(\Omega \) in \({\mathbb {R}}^{d}\) with smooth boundary with strictly positive curvature,

$$\begin{aligned} \left\{ {\displaystyle \int _{{\mathbb {R}}}}{\displaystyle \int _{{\mathbb {T}}^{d}}}\left| \sum _{k\in {\mathbb {Z}}^{d}}\chi _{r\Omega -x}(k)-r^{d}\left| \Omega \right| \right| ^{p}dxd\mu (r-R) \right\} ^{1/p}, \end{aligned}$$

where \(\mu \) is a Borel measure compactly supported on the positive real axis and \(R\rightarrow +\infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bergh, J., Löfström, J.: Interpolation Spaces, an Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  2. Brandolini, L., Colzani, L., Gigante, G., Travaglini, G.: \(L^{p}\) and weak-\(L^{p}\) estimates for the number of integer points in translated domains. Math. Proc. Camb. Philos. Soc. 159, 471–480 (2015)

    Article  MATH  Google Scholar 

  3. Colzani, L., Gariboldi, B., Gigante, G.: Mixed \(L^{p}(L^{2})\) norms of the lattice point discrepancy. Trans. Am. Math. Soc. (to appear). https://doi.org/10.1090/tran/7624

  4. Falconer, K.: Fractal Geometry, 3rd edn. Wiley, New York (2014)

    MATH  Google Scholar 

  5. Gariboldi, B.: Norms of the lattice point discrepancy, Ph. D. Dissertation, Università degli Studi di Milano-Bicocca (2017)

  6. Gelfand, I.M., Graev, M.I., Vilenkin, N.Ya.: Generalized Functions, vol. 5. Integral Geometry and Representation Theory, Translated from the Russian by Eugene Saletan, Academic Press, New York-London (1966)

  7. Herz, C.S.: Fourier transforms related to convex sets. Ann. Math. 75, 81–92 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hlawka, E.: Über Integrale auf convexen Körpern, I, II. Monatsh. Math. 54(1–36), 81–99 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huxley, M.: A fourth power discrepancy mean. Monatsh. Math. 73, 231–238 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ivić, A., Krätzel, E., Kühleitner, M., Nowak, W.G.: Lattice points in large regions and related arithmetic functions: recent developments in a very classic topic, Elementare und analytische Zahlentheorie, Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main, 20, Franz Steiner Verlag Stuttgart, Stuttgart, pp. 89–128 (2006)

  11. Kendall, D.G.: On the number of lattice points inside a random oval. Q. J. Math. 19, 1–26 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krätzel, E.: Lattice Points. Kluwer Academic Publisher, Dordrecht (1988)

    MATH  Google Scholar 

  13. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  14. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  15. Salem, R.: On singular monotonic functions whose spectrum has a given Hausdorff dimension. Ark. Mat. 1, 353–365 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  17. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  18. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, NJ (1971)

    MATH  Google Scholar 

  19. Travaglini, G.: Number Theory, Fourier Analysis and Geometric Discrepancy. London Mathematical Society Student Texts, vol. 81. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Gigante.

Additional information

Communicated by A. Iosevich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colzani, L., Gariboldi, B. & Gigante, G. \(L^{p}\) Norms of the Lattice Point Discrepancy. J Fourier Anal Appl 25, 2150–2195 (2019). https://doi.org/10.1007/s00041-019-09665-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-019-09665-1

Keywords

Mathematics Subject Classification

Navigation