Abstract
We solve the problem of best approximation by Parseval frames to an arbitrary frame in a subspace of an infinite dimensional Hilbert space. We explicitly describe all the solutions and we give a criterion for uniqueness. Our proof relies on the geometric structure of the set of all Parseval frames quadratically close to a given frame. In the process we show that its connected components can be parametrized by using the notion of index of a pair of projections, and we prove existence and uniqueness results of best approximation by Parseval frames restricted to these connected components.
Similar content being viewed by others
References
Aiken, J.G., Erdos, J.A., Goldstein, J.A.: On Löwdin orthogonalization. Int. J. Quantum Chem. 18, 1101–1108 (1980)
Amrein, W.O., Sinha, K.B.: On pairs of projections in a Hilbert space. Linear Algebra Appl. 208(209), 425–435 (1994)
Andruchow, E., Larotonda, G.: Hopf–Rinow theorem in the Sato Grassmannian. J. Funct. Anal. 255(7), 1692–1712 (2008)
Antezana, J., Chiumiento, E.: Approximation by partial isometries and symmetric approximation of finite frames. J. Fourier Anal. Appl. (2017). https://doi.org/10.1007/s00041-017-9547-5
Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)
Bhatia, R.: Matrix Analysis. Springer, Berlin (1997)
Carey, A.L.: Some homogeneous spaces and representations of the Hilbert Lie group \(U(\cal{H})\_2\). Rev. Roum. Math. Pures Appl. 30(7), 505–520 (1985)
Casazza, P.G.: The art of frame theory. Taiwan J. Math. 4, 129–201 (2000)
Casazza, P.G., Kutyniok, G. (eds.): Finite Frames: Theory and Applications. Birkhäuser, Boston (2012)
Chebira, A., Kovačević, J.: Life beyond bases: the advent of frames (Part I). IEEE Signal Process. Mag. 24(4), 86–104 (2007)
Chebira, A., Kovačević, J.: Life beyond bases: the advent of frames (Part II). IEEE Signal Process. Mag. 24(5), 115–125 (2007)
Chiumiento, E.: Geometry of \(\mathfrak{I}\)-Stiefel manifolds. Proc. Am. Math. Soc. 138(1), 341–353 (2010)
Christensen, O.: Frame perturbations. Proc. Am. Math. Soc. 123(4), 1217–1220 (1995)
Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)
D’Attellis, C.E., Fernández-Berdaguer, E.M. (eds.): Wavelet Theory and Harmonic Analysis in Applied Sciences. Birkhäuser, Boston (1997)
Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)
Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)
Feichtinger, H., Kozek, W., Luef, F.: Gabor analysis over finite abelian groups. Appl. Comput. Harmon. Anal. 26(2), 230–248 (2009)
Frank, M., Paulsen, V., Tiballi, T.: Symmetric approximation of frames and bases in Hilbert spaces. Trans. Am. Math. Soc. 354, 777–793 (2002)
Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Non-self-adjoint Operators. American Mathematical Society, Providence (1960)
Han, D.: Approximations for Gabor and wavelet frames. Trans. Am. Math. Soc. 355, 3329–3342 (2003)
Han, D.: Tight frame approximation for multi-frames and super-frames. J. Approx. Theory 129, 78–93 (2004)
Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Am. Math. Soc. 147, 1–103 (2000)
Janssen, A., Strohmer, T.: Characterization and computation of canonical tight windows for Gabor frames. J. Fourier Anal. Appl. 8, 1–28 (2002)
Li, C.-K., Mathias, R.: The Lidskii–Mirsky–Wielandt theorem: additive and multiplicative versions. Numer. Math. 81, 377–413 (1999)
Löwdin, P.-O.: On the nonorthogonality problem. Adv. Quantum Chem. 5, 185–199 (1970)
Maher, P.J.: Partially isometric approximation of positive operators. Ill. J. Math. 33, 227–243 (1989)
Mitra, S.K., Bhimasankaram, P., Malik, S.B.: Matrix Partial Orders, Shorted Operators and Applications. World Scientific, New Jersey (2010)
Munkres, J.R.: Topology, Second edn, p. 07458. Prentice Hall, Upper Saddle River (2000)
Strătilă, Ş., Voiculescu, D.: On a class of KMS states for the group U(\(\infty \)). Math. Ann. 235(1), 87–110 (1978)
Wu, P.Y.: Approximation by partial isometries. Proc. Edinb. Math. Soc. 29, 255–261 (1986)
Acknowledgements
I am grateful to Jorge Antezana for several helpful discussions. Also I would like to thank the referees for their constructive comments. This research was supported by Grants CONICET (PIP 2016 112201), FCE-UNLP (11X681) and ANPCyT (2015 1505).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Hans G. Feichtinger.
Rights and permissions
About this article
Cite this article
Chiumiento, E. Global Symmetric Approximation of Frames. J Fourier Anal Appl 25, 1395–1423 (2019). https://doi.org/10.1007/s00041-018-9632-4
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00041-018-9632-4
Keywords
- Symmetric approximation
- Frame
- Hilbert space
- Hilbert–Schmidt operator
- Index of a pair of projections
- Partial isometry
- Löwdin orthogonalization
