Skip to main content
Log in

Global Symmetric Approximation of Frames

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We solve the problem of best approximation by Parseval frames to an arbitrary frame in a subspace of an infinite dimensional Hilbert space. We explicitly describe all the solutions and we give a criterion for uniqueness. Our proof relies on the geometric structure of the set of all Parseval frames quadratically close to a given frame. In the process we show that its connected components can be parametrized by using the notion of index of a pair of projections, and we prove existence and uniqueness results of best approximation by Parseval frames restricted to these connected components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiken, J.G., Erdos, J.A., Goldstein, J.A.: On Löwdin orthogonalization. Int. J. Quantum Chem. 18, 1101–1108 (1980)

    Article  Google Scholar 

  2. Amrein, W.O., Sinha, K.B.: On pairs of projections in a Hilbert space. Linear Algebra Appl. 208(209), 425–435 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andruchow, E., Larotonda, G.: Hopf–Rinow theorem in the Sato Grassmannian. J. Funct. Anal. 255(7), 1692–1712 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antezana, J., Chiumiento, E.: Approximation by partial isometries and symmetric approximation of finite frames. J. Fourier Anal. Appl. (2017). https://doi.org/10.1007/s00041-017-9547-5

  5. Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhatia, R.: Matrix Analysis. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  7. Carey, A.L.: Some homogeneous spaces and representations of the Hilbert Lie group \(U(\cal{H})\_2\). Rev. Roum. Math. Pures Appl. 30(7), 505–520 (1985)

    MathSciNet  MATH  Google Scholar 

  8. Casazza, P.G.: The art of frame theory. Taiwan J. Math. 4, 129–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Casazza, P.G., Kutyniok, G. (eds.): Finite Frames: Theory and Applications. Birkhäuser, Boston (2012)

    Google Scholar 

  10. Chebira, A., Kovačević, J.: Life beyond bases: the advent of frames (Part I). IEEE Signal Process. Mag. 24(4), 86–104 (2007)

    Article  Google Scholar 

  11. Chebira, A., Kovačević, J.: Life beyond bases: the advent of frames (Part II). IEEE Signal Process. Mag. 24(5), 115–125 (2007)

    Article  Google Scholar 

  12. Chiumiento, E.: Geometry of \(\mathfrak{I}\)-Stiefel manifolds. Proc. Am. Math. Soc. 138(1), 341–353 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christensen, O.: Frame perturbations. Proc. Am. Math. Soc. 123(4), 1217–1220 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  15. D’Attellis, C.E., Fernández-Berdaguer, E.M. (eds.): Wavelet Theory and Harmonic Analysis in Applied Sciences. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  16. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Article  MATH  Google Scholar 

  18. Feichtinger, H., Kozek, W., Luef, F.: Gabor analysis over finite abelian groups. Appl. Comput. Harmon. Anal. 26(2), 230–248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frank, M., Paulsen, V., Tiballi, T.: Symmetric approximation of frames and bases in Hilbert spaces. Trans. Am. Math. Soc. 354, 777–793 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Non-self-adjoint Operators. American Mathematical Society, Providence (1960)

    Google Scholar 

  21. Han, D.: Approximations for Gabor and wavelet frames. Trans. Am. Math. Soc. 355, 3329–3342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Han, D.: Tight frame approximation for multi-frames and super-frames. J. Approx. Theory 129, 78–93 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Am. Math. Soc. 147, 1–103 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Janssen, A., Strohmer, T.: Characterization and computation of canonical tight windows for Gabor frames. J. Fourier Anal. Appl. 8, 1–28 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C.-K., Mathias, R.: The Lidskii–Mirsky–Wielandt theorem: additive and multiplicative versions. Numer. Math. 81, 377–413 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Löwdin, P.-O.: On the nonorthogonality problem. Adv. Quantum Chem. 5, 185–199 (1970)

    Article  Google Scholar 

  27. Maher, P.J.: Partially isometric approximation of positive operators. Ill. J. Math. 33, 227–243 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mitra, S.K., Bhimasankaram, P., Malik, S.B.: Matrix Partial Orders, Shorted Operators and Applications. World Scientific, New Jersey (2010)

    Book  MATH  Google Scholar 

  29. Munkres, J.R.: Topology, Second edn, p. 07458. Prentice Hall, Upper Saddle River (2000)

    Google Scholar 

  30. Strătilă, Ş., Voiculescu, D.: On a class of KMS states for the group U(\(\infty \)). Math. Ann. 235(1), 87–110 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, P.Y.: Approximation by partial isometries. Proc. Edinb. Math. Soc. 29, 255–261 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Jorge Antezana for several helpful discussions. Also I would like to thank the referees for their constructive comments. This research was supported by Grants CONICET (PIP 2016 112201), FCE-UNLP (11X681) and ANPCyT (2015 1505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Chiumiento.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiumiento, E. Global Symmetric Approximation of Frames. J Fourier Anal Appl 25, 1395–1423 (2019). https://doi.org/10.1007/s00041-018-9632-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-9632-4

Keywords

Mathematics Subject Classification

Navigation