Mean Value Property of Harmonic Functions on the Tetrahedral Sierpinski Gasket

  • Hua Qiu
  • Yipeng Wu
  • Kui Yao


In this paper, we study the mean value property for both the harmonic functions and the functions in the domain of the Laplacian on the tetrahedral Sierpinski gasket. This paper is a continuation of the work of Strichartz and the first author (Qiu and Strichartz, J Fourier Anal Appl 19:943–966, 2013)where the same property on p.c.f. self-similar sets with Dihedral-3 symmetry was considered.


Mean value property Tetrahedral Sierpinski gasket Harmonic functions Laplacian Self-similar sets 

Mathematics Subject Classification

Primary: 28A80 



The research of the Hua Qiu and Kui Yao were supported by the National Science Foundation of China, Grant 11471157.


  1. 1.
    Azzam, J., Hall, M.A., Strichartz, R.S.: Conformal energy, conformal Laplacian, and energy measures on the Sierpinski gasket. Trans. Am. Math. Soc. 360, 2089–2131 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bell, R., Ho, C.W., Strichartz, R.S.: Energy measures of harmonic functions on the Sierpinski gasket. Indina Univ. Math. J. 63(3), 831–868 (2013)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Barlow, M.T., Kigami, J.: Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets. J. Lond. Math. Soc. 56, 320–332 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ben-Bassat, O., Strichartz, R.S., Teplyaev, A.: What is not in the domain of the Laplacian on Sierpinski gasket type fractals. J. Funct. Anal. 166, 197–217 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cao, S.P., Qiu, H.: Some properties of the derivatives on Sierpinski gasket type fractals. Constr. Approx. 46(2), 319–347 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dalrymple, K., Strichartz, R.S., Vinson, J.P.: Fractal differential equations on the Sierpinski gasket. J. Fourier Anal. Appl. 5, 203–284 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fukushima, M., Shima, T.: On a spectral analysis for the Sierpinski gasket. Potential Anal. 1, 1–35 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hino, M.: Some properties of energy measures on Sierpinski gasket type fractals. J. Fractal Geom. 3, 245–263 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kigami, J.: A harmonic calculus on the Sierpinski spaces. Japan J. Appl. Math. 6(2), 259–290 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kigami, J.: Harmonic calculus on p.c.f. self-similar sets. Trans. Am. Math. Soc. 335(2), 721–755 (1993)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kigami, J.: Distribution of localized eigenvalues of Laplacian on p.c.f. self-similar sets. J. Funct. Anal. 128, 170–198 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kigami, J., Lapidus, M.L.: Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals. Commun. Math. Phys. 158, 93–125 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Qiu, H., Strichartz, R.S.: Mean value properties of harmonic functions on Sierpinski gasket type fractals. J. Fourier Anal. Appl. 19, 943–966 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rogers, L.G., Strichartz, R.S.: Distribution theory on p.c.f. fractals. J. Anal. Math. 112, 137–191 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Shima, T.: On eigenvalue problems for Laplacians on p.c.f. self-similar sets. Japan J. Ind. Appl. Math. 13, 1–23 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Strichartz, R.S.: Fractals in large. Can. J. Math. 50, 638–657 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Strichartz, R.S.: Some properties of Laplacians on fractals. J. Funct. Anal. 164, 181–208 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Strichartz, R.S.: Taylor approximations on Sierpinski gasket type fractals. J. Funct. Anal. 174, 76–127 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Strichartz, R.S.: Function spaces on fractals. J. Funct. Anal. 198(1), 43–83 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Strichartz, R.S.: Solvability for differential equations on fractals. J. Anal. Math. 96, 247–267 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Strichartz, R.S.: Differential Equations on Fractals: A Tutorial. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  23. 23.
    Strichartz, R.S., Usher, M.: Splines on fractals. Math. Proc. Camb. Philos. Soc. 129, 331–360 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Teplyaev, A.: Spectral analysis on infinite Sierpinski gaskets. J. Funct. Anal. 159, 537–567 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Teplyaev, A.: Gradients on fractals. J. Funct. Anal. 174, 128–154 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Institute of SciencePLA University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations